Find the coordinates of all points

force
without using a graphing calculator
---------------------------------
How would you find the coordinates of all points(x,y) of the tangent lines of a relation such as (x^2)*y - y^3 = 8 (btw this graph looks like 3 parabolas oppening, one to the right, left and one downwards) where the tangent line is horzontal ?

Would using implicit differentiation work getting y'=(-2xy)/((x^2) -3y^2) then equating it to zero(slope) ?

Consider x^3 + y^3 - 9xy = 0 how can you isolate the y on one side in the form y = x ?
 
Physics news on Phys.org
Consider the curve given implicitly by:

x^{2}y-y^{3}=8

and the derivative

y^{\prime}=\frac{-2xy}{x^{2}-3y^{2}}

horizontal tangent lines occur when y^{\prime}=0, so set -2xy^2=0 \Rightarrow x=0\mbox{ or }y=0, and we know that y\neq 0 at all points on the curve, but x=0 is a point on the curve, namely (0,-2), where we do indeed have a horizontal tangent line to the curve.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top