Find the drift speed of electrons in a wire

Click For Summary
SUMMARY

The drift speed of electrons in a cylindrical copper wire carrying a current of 8.00 A can be calculated using the formula $$v_d = \frac{I}{neA}$$. The charge of an electron is 1.6 x 10^-19 coulombs, and the free electron density for copper is calculated to be 8.45 x 10^22 electrons/cm^3 based on its density of 8.92 g/cm^3. The cross-sectional area of the wire is determined using the radius of 1.2 x 10^-3 m. The initial calculation of 130.8 m/s is incorrect due to unit mismatches, specifically the conversion between meters and centimeters.

PREREQUISITES
  • Understanding of electric current and drift velocity
  • Familiarity with the properties of copper, including its density
  • Knowledge of dimensional analysis for unit conversion
  • Ability to apply the formula $$v_d = \frac{I}{neA}$$
NEXT STEPS
  • Review the concept of drift velocity in conductors
  • Learn about dimensional analysis and its applications in physics
  • Study the properties of copper and its electron density
  • Practice unit conversions between different measurement systems (e.g., meters to centimeters)
USEFUL FOR

Students studying electromagnetism, physics educators, electrical engineers, and anyone interested in understanding electron behavior in conductive materials.

Jaccobtw
Messages
163
Reaction score
32
Homework Statement
A cylindrical copper wire has a radius of 1.2∗10^−3 m. It carries a constant current of 8.00A. What is the drift speed of the electrons in the wire in m/s? Assume each copper atom contributes one free electron to the current. The density of copper is 8.92g/cm^3.
.
Relevant Equations
$$v_d = \frac{I}{neA}$$
We need to find each variable. ##I## is already given to us as 8 amps. The charge of an electron is 1.6 x 10^-19 coulombs. The cross sectional area will just be ##\pi(1.2∗10^−3)^2## m^2. Now we need to find the free electron density. We are given the density of of copper and can use dimensional analysis to find free electron density. Assume one free electron per copper atom:

$$\frac{8.92g}{cm^3} \times \frac{1 mol}{63.55g} \times \frac{6.022 \times 10^{23}atoms}{1mol} \times \frac{1 electron}{1 atom} = 8.45 \times 10^{22} \frac{electrons}{cm^3}$$

Plug in numbers

$$\frac{8.0 amps}{(\frac{8.45 \times10^{22}electrons}{cm^3})(1.6\times10^{-19}C)(\pi(1.2\times10^{-3})^2)}$$

I git 130.8 m/s but it was wrong. Can anyone help me find out why?
 
Last edited:
Physics news on Phys.org
Jaccobtw said:
We are given the density of of copper and can use dimensional analysis to find free electron density.
As much as I love dimensional analysis, it can never give you an exact relation. You can use it to check your answers and deduct the functional form of physical relations up to constants.

Also, 1.2e-3 m is not the same as 1.2e-3 cm.
 
  • Like
Likes   Reactions: Jaccobtw
Jaccobtw said:
Homework Statement:: A cylindrical copper wire has a radius of 1.2∗10^−3 m. It carries a constant current of 8.00A. What is the drift speed of the electrons in the wire in m/s? Assume each copper atom contributes one free electron to the current. The density of copper is 8.92g/cm^3.
.
Relevant Equations:: $$v_d = \frac{I}{neA}$$

We need to find each variable. ##I## is already given to us as 8 amps. The charge of an electron is 1.6 x 10^-19 coulombs. The cross sectional area will just be ##\pi(1.2∗10^−3)^2## m^2. Now we need to find the free electron density. We are given the density of of copper and can use dimensional analysis to find free electron density. Assume one free electron per copper atom:

$$\frac{8.92g}{cm^3} \times \frac{1 mol}{63.55g} \times \frac{6.022 \times 10^{23}atoms}{1mol} \times \frac{1 electron}{1 atom} = 8.45 \times 10^{22} \frac{electrons}{cm^3}$$

Plug in numbers

$$\frac{8.0 amps}{(\frac{8.45 \times10^{22}electrons}{cm^3})(1.6\times10^{-19}C)(\pi(1.2\times10^{-3})^2)}$$

I git 130.8 m/s but it was wrong. Can anyone help me find out why?
Carefully simplify the units in your answer. You have some mismatched units which don't "cancel" .
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 1 ·
Replies
1
Views
11K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
19
Views
4K