Find the inequality that satisfies this quadratic problem

Click For Summary
The discussion revolves around finding an inequality for the quadratic equation k^2 - 7k + 12 < 0. Participants explore methods to determine the solution, primarily focusing on the critical values and their neighborhoods. One contributor emphasizes the simplicity of examining these neighborhoods, while another discusses factoring the quadratic to analyze the signs of its components. The conversation also touches on the challenges of directly investigating the linear equations derived from the quadratic. Ultimately, the consensus is that identifying the zeros of the equation is crucial for solving the inequality effectively.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached...
Relevant Equations
quadratic equations...
see the textbook problem below;

1634785415928.png
see my working to solution below;

1634785465755.png

i generally examine the neighbourhood of the critical values in trying to determine the correct inequality. My question is
"is there a different approach other than checking the neighbourhood of the critical values"? In other words, i am seeking an alternative approach.

cheers guys...
 
Physics news on Phys.org
I got the same result, but I used the same method. The quadratic equation for ##k## is ##k^2-7k+12<0##. This is a parabola, opened at the top, so all values between the two zeros have to be negative, and the zeros are ##7/2\pm \sqrt{1/4}.##

What other method do you mean? Without the parabola in mind, we can write
$$
k^2-7k+12=(k-4)\cdot(k-3) < 0
$$
In order for a product to be negative, the two factors must be of different signs. So we have the options ##k-4>0## and ##k-3<0## which is impossible, or ##k-4<0## and ##k-3>0## which is the solution.
 
I meant another approach...cheers Fresh :cool: :cool:...cheers mate, i find it much easier just to examine the neighbourhood of the critical values ##k## and i check whether they satisfy the given inequality...this is similar to your analysis that you have shown on your last paragraph. Cheers.
 
chwala said:
I meant another approach...cheers Fresh :cool: :cool:...cheers mate, i find it much easier just to examine the neighbourhood...its pretty straightforward.
Yes. Once you know the zeros of the equation you are done, one way or the other. I scribbled the parabola and "saw" that we are looking for the in-betweens. I only added the consideration with the factors as an additional way to get the result.

The direct investigation of the straights ##y=k(4x-3)## is a bit difficult because ##k## changes slope and the point where the straight crosses a coordinate axis simultaneously. I see no way to get a hold of this line bundle. Calculating the intersection points is easier.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...