Find the integral of x/(x^2 +4x +13)

  • Thread starter Thread starter mat331760298
  • Start date Start date
  • Tags Tags
    Integral
mat331760298
Messages
13
Reaction score
0
1. Find the integral of x/(x^2 +4x +13)

I'm not sure if I need to complete the square or what. I really don't know where to begin.
 
Physics news on Phys.org


Try rewriting the integrand as a difference of two fractions.
 


Yes, start by completing the square. That will reduce it to something like (x- a)^2+ b. Then let u= x- a so that denominator becomes u^2+ b and the numerator becomes x= u+ a:
\int \frac{x}{x^2+ 4x+ 13}= \int \frac{u}{u^2+ b}du+ \int\frac{a}{u^2+ b}du
The first integral can be done by the substitution v= u^2+ b and the second is an arctangent.
 
Last edited by a moderator:


First however note that:
<br /> \frac{x}{x^{2}+4x+13}=\frac{1}{2}\frac{2x+4}{x^{2}+4x+13}-\frac{2}{x^{2}+4x+13}<br />
When integrating this expression, the first term is of the form f'(x)/f(x) which integrates to log(f(x)). Complte the square for the second term.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top