Find the length of curve r=1-cos (tita)

  • Thread starter Thread starter teng125
  • Start date Start date
  • Tags Tags
    Curve Length
teng125
Messages
416
Reaction score
0
find the length of curve r=1-cos (tita)

pls help to formulat an eqn for f(x,y)

thanx
 
Physics news on Phys.org
Hello teng,

the curve is given in polar coordinates.

\theta \, \mapsto \, (r(\theta)\cos(\theta),r(\theta)\sin(\theta))

with \theta_1\leq\theta\leq\theta_2

You can make use of the appropriate formula to calculate the length L.

L=\int_{\theta_1}^{\theta_2}\sqrt{(r'(\theta))^2+r^2(\theta)} \, d\theta

Regards,

nazzard
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top