Find the limits of the following functions

  • Thread starter Thread starter Mattofix
  • Start date Start date
  • Tags Tags
    Functions Limits
Mattofix
Messages
137
Reaction score
0

Homework Statement



Ok – two limit questions. Find the limit as x -> infinity or if no limit exists then prove so.

i) (x + log(x^2))/(3x+2)
ii) x/(1 + (x^2)(sin x)^2


The Attempt at a Solution



i) my first thought was that log(x^2)/x tends to 0 so the function tends to 1/3, but if this is the case do I need to prove that log(x^2)/x tends to 0?

ii) well 0 <= (sin x)^2 <= 1 , I am pretty stuck on this one.
 
Physics news on Phys.org
Does log here means ln? If so then by using L'hopital rule
\lim_{x\to\infty}\frac{x+\ln x^2}{3x+2}=\lim_{x\to\infty}\frac{(x+\ln x^2)&#039;}{(3x+2)&#039;}=\lim_{x\to\infty}\frac{1+\frac{2x}{x^2}}{3}=\frac{1}{3}

\lim_{x\to\infty}\frac{x}{1+x^2\sin^2 x}=\lim_{x\to\infty}\frac{1}{2x\sin^2 x+x^2 2\sin x\cos x}
 
Last edited:
thanks - i) makes sense.

so ii) -> 0 ?
 
fermio said:
\lim_{x\to\infty}\frac{x}{1+x^2\sin^2 x}=\lim_{x\to\infty}\frac{1}{2x\sin^2 x+x^2 2\sin x\cos x}

Well, L'Hospital does not work for cases, in which, the limit does not exist. :wink:

Mattofix said:
so ii) -> 0 ?

Nope.

You can think like this: as x tends to infinity, sin(x) can take any value on the interval [-1, 1].

If sin(x) = 0, your expression becomes: x.
And if sin(x) = 1, then your expression will become: x / (1 + x2)

So now, we'll choose 2 sequences (namely, xn, and x'n), both of which grow without bounds, and sin(xn) = 0, sin(x'n) = 1, for all n.

We can choose xn = 2n(pi), and x'n = pi/2 + 2n(pi).
The 2 sequences above satisfy all requirements above (you can check it yourself).

What can you say about the 2 limits:

\lim_{n \rightarrow \infty} \frac{x_n}{1 + x_n ^2 \sin ^ 2 (x_n)} , \quad n \in \mathbb{N}

and:

\lim_{n \rightarrow \infty} \frac{x&#039;_n}{1 + x&#039;_n ^2 \sin ^ 2 (x&#039;_n)} , \quad n \in \mathbb{N}

From there, what can you conclude about the limit:

\lim_{x \rightarrow \infty} \frac{x}{1 + x ^2 \sin ^ 2 (x)}?

Can you go from here? :)
 
Last edited:
yep - thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top