Find the number of integer solutions of a second degree polynomial equation

AI Thread Summary
The discussion focuses on finding integer solutions for the polynomial equation derived from the expression (x^2 - x - 3 + 2c)/2 = x(ax+b). The participants analyze the equation and apply Girard's relations to express the sum and product of the roots. They conclude that since the coefficients derived from integers a, b, and c are all odd, it is impossible to find integer solutions due to the nature of odd products and sums. Ultimately, they determine that the polynomial cannot be factored into rational roots, leading to the conclusion that there are no integer solutions. The conversation emphasizes the mathematical reasoning behind the impossibility of finding such solutions.
Leo Consoli
Messages
39
Reaction score
5
Homework Statement
Being a, b and c integers, find the amount of integer solutions of (x^2 - x - 3 + 2c)/2 = x(ax+b)
Relevant Equations
Girard relations
x^2 - x -3 + 2c = 2x(ax+b)
x^2 -2ax^2 - 2bx - x - 3 + 2c = 0
x^2(1-2a) -x(1+2b) -3 + 2c =0
Using girard
r1+r2 = (1+ 2b)/(1-2a)
r1xr2 = (-3 +2c)/(1-2a)
After this I am stuck.
Thank you.
 
Last edited:
Physics news on Phys.org
Leo Consoli said:
Problem Statement: Being a, b and c integers, find all integer solutions of (x^2 - x - 3 + 2c)/2 = x(ax+b)
Relevant Equations: Girard relations

x^2 - x -3 + 2c = 2x(ax+b)
x^2 -2ax^2 - 2bx - x - 3 + 2c = 0
x^2(1-2a) -x(1+2b) -3 + 2c =0
Using girard
r1+r2 = 1+ 2b/1-2a
r1xr2 = -3 +2c/1-a
Since the solutions are integers, their sum and their product would also be integers, but after this I am stuck.
Thank you.
You should make the following correct by using parentheses where needed.
Using girard​
r1+r2 = 1+ 2b/1-2a​
r1xr2 = -3 +2c/1-a​
They should read:
r1+r2 = (1+ 2b)/(1−2a)​
r1×r2 = (−3 +2c)/(1−a)​

Those expressions for the sum and product of the roots are not necessarily integers, they're rational expressions in general.
 
  • Like
Likes Leo Consoli
Thank you, I will edit it.
 
If you add like terms and set to zero, you end up with a second degree polynomial. It's two roots that you can find with the quadratic will be the only possible solutions.
 
Leo Consoli said:
Problem Statement: Being a, b and c integers, find the amount of integer solutions of (x^2 - x - 3 + 2c)/2 = x(ax+b)
So, do you need to find what values a, b, and/or c must take on to get integer solutions, and then determine how many such integer solutions there are?
 
  • Like
Likes Leo Consoli
SammyS said:
So, do you need to find what values a, b, and/or c must take on to get integer solutions, and then determine how many such integer solutions there are?
I think that's it.
 
WWGD said:
If you add like terms and set to zero, you end up with a second degree polynomial. It's two roots that you can find with the quadratic will be the only possible solutions.
But can't you make more than one second degree polynomial with the values of a, b and c?
 
Leo Consoli said:
But can't you make more than one second degree polynomial with the values of a, b and c?
You're right, I didn't read carefully, my bad.
 
  • Like
Likes Leo Consoli
Leo Consoli said:
Problem Statement: Being a, b and c integers, find the amount of integer solutions of (x^2 - x - 3 + 2c)/2 = x(ax+b)

x^2(1-2a) -x(1+2b) -3 + 2c =0
Rewrite your second degree equation as:
## (2a-1)x^2+(2b+1)x - (2c-3) =0 ##
Notice that if a, b, and c are all integers, then each of ## (2a-1),\,(2b+1),\, (2c-3) \, ## is odd. Also, none of those can be zero, so there are no simple solutions.

Use the master product rule for factoring a second degree polynomial of the form ##Ax^2+Bx+C ## where ##A,\,B,\,C\,## are all integers.
 
  • Like
Likes Leo Consoli
  • #10
In this case, how would I find parcels of AC that add up to B?
 
  • #11
Leo Consoli said:
In this case, how would I find parcels of AC that add up to B?
(I'm guessing that what you refer to as parcels, I would call factor pairs .)

One clue to answering your question is that A, B, and C are all odd.
 
  • Like
Likes Leo Consoli
  • #12
That would mean there exist two numbers (m and n) such that
m×n=AC
m+n=B
But AC is odd, and B is also odd, and there isn't a pair of numbers whose sum and product is odd, so its not possible to factorize it, meaning the polynomial has no rational roots.
Is this it?
 
  • #13
Leo Consoli said:
That would mean there exist two numbers (m and n) such that
m×n=AC
m+n=B
But AC is odd, and B is also odd, and there isn't a pair of numbers whose sum and product is odd, so its not possible to factorize it, meaning the polynomial has no rational roots.
Is this it?
That's the way I see it.

And, if there are no rational roots, then surely there are no integer roots.
 
  • Like
Likes Leo Consoli
  • #14
Thank you very much for the help.
 
Back
Top