Find the shortest path between two points in polar coordinates

mataleo
Messages
2
Reaction score
0

Homework Statement


Find the shortest distance between two points using polar coordinates, ie, using them as a line element:

ds^2 = dr^2 + r^2 dθ^2

Homework Equations



For an integral
I = ∫f
Euler-Lagrange Eq must hold
df/dθ - d/dr(df/dθ') = 0

The Attempt at a Solution


f = ds = √(1 + (r * θ')^2)

df/dθ = 0

df/dθ' = r^2 * θ' / √(1 + (r * θ')^2) = C

where C is a constant

Now I want to show this is a straight line so the form should be

y = m*x + b ==> r * cos(θ) = m * r * sin(theta) + b

but I'm struggling with how to prove this. I rearranged the terms and solved the integral

θ = ∫(dr / r √(r^2 - C^2))

but I get a piecewise solution so it seems like I've gone in the wrong direction or am missing something. How do I show that this is equivalent to a straight line?

Thanks
 
Last edited:
Physics news on Phys.org
Note that you can write the polar equation for a straight line as ##r \cos(\theta + \alpha) = C## for constants ##\alpha## and ##C##. See if this helps.

(It appears that you might be measuring ##\theta## from the y-axis. But I believe the usual convention is to measure it from the x-axis. Also, I think you are missing an overall factor of C in your integral for θ.)
 

Attachments

  • polar line.png
    polar line.png
    2.9 KB · Views: 1,310
Last edited:
Yead, I dropped 'C' from the numerator in the integral and thanks for the suggestion on the polar form of the equation being equivalent to rcos(θ+α)=C, but I'm still getting an integral that doesn't seem to fit this form:

θ = √(-(C/r)^2 + 1) / C^2 for C^2/R^2 <= 1

Maybe if I just show that θ'' = 0 then we know that the path is straight.
 
If you can't find the integral in a table, try letting u = r/C and then letting u = sec##\phi##.

In general, θ'' ≠ 0 for a straight line.
 
It works if you make the substitution for the element of integration to be d(c/r). If you work out the differential with the chain rule you get d(c/r) = -(c/r^2) dr. This is the right form you need when you factor the r^2 term out of the square root of the starting form of the integrand, (1 / r sqrt(r^2 - c^2)). Integration in the new form does give you sin^-1(c/r), but I don't really like the negative sign in the relation between the differentials. It may just be that it is "absorbed" into constant c, but there is probably a better explanation regarding that issue. However, the form of the differential makes it a lot easier to deal with looking up the integral in a table and also if you choose to use a trig substitution. The integral after substitution should have the form Int(d(c/r)/sqrt(1-(c/r)^2)). Then, once you have a RHS = sin^-1(c/r) = LHS = theta + constant, taking the sine of both sides and multiplying by r, you should get c = rsin(theta + constant) matching the form of a straight line a la polar coordinates (or a la "I Love Lucy", Simpsons joke). Any thoughts on the negative sign?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top