Find the work required to pump all the water

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Pump Water Work
nameVoid
Messages
238
Reaction score
0
the ends of an 8 foot long water trough are equilateral triangles having sides of length 2 feet. If the trough is full of water, find the work required to pump all the water over the top.
 
Physics news on Phys.org


possible trapazoid section? area?
 


I presume the trough has the vertex of the triangle down! Don't just try to remember formulas- think about what work means. The work done to lift a "piece of water" out of the trough is the weight of the piece times the height it must be lifted: the distance from the top base of the triangle to the piece. We can handle all "pieces of water" that have that same distance at once by thinking of a "layer of water" at a given distance from the top base. That will be a rectanglar layer having length 8 feet, depth dx, and width w, depending on what x is. That is, its volume will be 8w(x)dx and so its weight will be \gamma (8w(x)dx) where \gamma is the density of water (look it up) in pounds per cubic foot. That layer has to be lifted x feet to the top of the trough so the work done is 8\gamma w(x)x dx. Integrate that from 0 to the height of the triangle.

Now, determining w(x). Draw a picture: an equilateral triangle with vertex at the bottom, base at the height and a horizontal line x units below the base. The length of that line is w(x). "Similar triangles" is a good way to find its length. Another way would be to find the equations of the two lines, both through (0, 0) and one through (1, \sqrt{3}), the other through (-1, \sqrt{3}). Be careful what you call "x" and what "w". Do you see where I got the \sqrt{3}?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top