karush
Gold Member
MHB
- 3,240
- 5
(a)
Let $$u=\left[ \begin{array}{c} 2 \\ 3 \\-1 \end{array} \right] $$ and $$w=\left[ \begin{array}{c} 3 \\ -1 \\p \end{array} \right] $$
Given that u is perpendicular to $$w$$, find the value of $$p$$
so by Dot Product $$u \bullet w = 0$$ then $$u \perp w$$
using TI-Nspire solve(dotP(u,w)=0,p) $$p=3$$
(b)
Let $$v=\left[ \begin{array}{c} 1 \\ q \\5 \end{array} \right] $$ Given that $$|v|=\sqrt{42}$$ , find the possible values of $$q$$
does this mean
$$|\sqrt{1^2+q^2+5^2}|=\sqrt{42}$$ if so $$q=\pm 4$$
Let $$u=\left[ \begin{array}{c} 2 \\ 3 \\-1 \end{array} \right] $$ and $$w=\left[ \begin{array}{c} 3 \\ -1 \\p \end{array} \right] $$
Given that u is perpendicular to $$w$$, find the value of $$p$$
so by Dot Product $$u \bullet w = 0$$ then $$u \perp w$$
using TI-Nspire solve(dotP(u,w)=0,p) $$p=3$$
(b)
Let $$v=\left[ \begin{array}{c} 1 \\ q \\5 \end{array} \right] $$ Given that $$|v|=\sqrt{42}$$ , find the possible values of $$q$$
does this mean
$$|\sqrt{1^2+q^2+5^2}|=\sqrt{42}$$ if so $$q=\pm 4$$