Finding a closed form expression for an infinite union

Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Show that ##\displaystyle \bigcup_{n=2}^\infty \left[ \frac{1}{n} , \frac{n}{n+1} \right] = (0,1)##.

Homework Equations

The Attempt at a Solution


I'm not sure how to show this rigorously. It is sufficient to note that ##\lim_{n\to\infty} \frac{1}{n} = 0## and that ##\lim_{n\to\infty}\frac{n}{n+1} = 1##? How can I verify that this union actually isn't ##[0,1]##?
 
Physics news on Phys.org
No, it is not sufficient to consider the limits. You need to show that for any ##x \in (0,1)## there is (at least) one set in the union that contains that ##x## and for any ##x \notin (0,1)## there is no set in the union that contains that ##x##.
 
Note that the union is over finite values of n. x is an element of the union if and only if it falls in least one of the intervals for some finite n.

To show set equality you generally have to argue the subset relationship in both directions. So your proof has two parts.
1. Let x be in the union, i.e. in ##\left [ 1/n, n/(n+1)\right ]## for some ##n##. Show it's in (0, 1). That means by definition the union is a subset of (0, 1).
Edit to add: To be more precise, that means the selected interval is a subset of (0, 1). But the choice of ##n## was arbitrary, so every such interval is a subset of (0, 1) and therefore so is the union.

2. Let x be in (0, 1). Show it falls in one of the intervals and therefore in the union. Therefore (0,1) is a subset of the union.

Final line of the proof, ##A \subseteq B## and ##B \subseteq A## therefore ##A = B##

That's the general form of a proof that two sets are equal. The structure suggested by @Orodruin is equivalent.

Orodruin said:
You need to show that for any ##x \in (0,1)## there is (at least) one set in the union that contains that ##x##
That's my part 2.

Orodruin said:
and for any ##x \notin (0,1)## there is no set in the union that contains that ##x##.
That's the contrapositive of my part 1, and therefore equivalent.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
13
Views
4K
Replies
6
Views
2K
Replies
5
Views
3K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
5
Views
1K
Replies
16
Views
162
Back
Top