Finding a constant such that system is consistent

  • Thread starter Thread starter TranscendArcu
  • Start date Start date
  • Tags Tags
    Constant System
TranscendArcu
Messages
277
Reaction score
0

Homework Statement


Screen_shot_2012_02_24_at_1_05_40_PM.png


The Attempt at a Solution


So I was thinking of trying to do row reduction in the hopes that would lead me to an answer.

\left| \begin{array}{ccc}<br /> 0&amp; 1&amp; 1&amp; 2 \\<br /> 1&amp;1&amp;1&amp;a \\<br /> 1&amp;1&amp;0&amp;2 \end{array} \right| → \left| \begin{array}{ccc}<br /> 1&amp;1&amp;1&amp;a \\<br /> 0&amp;1&amp;1&amp;2 \\<br /> 1&amp;1&amp;0&amp;2 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;1&amp;1&amp;2 \\<br /> 1&amp;1&amp;0&amp;2 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;1&amp;1&amp;2 \\<br /> 0&amp;1&amp;0&amp;-a+4 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;0&amp;1&amp;a-2 \\<br /> 0&amp;1&amp;0&amp;-a+4 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;1&amp;0&amp;-a+4 \\<br /> 0&amp;0&amp;1&amp;a-2<br /> \end{array} \right|

So this seems to be telling me that I can choose any a and x=z=a-2 and y=-a+4. Am I doing this right?
 
Physics news on Phys.org
TranscendArcu said:

Homework Statement


Screen_shot_2012_02_24_at_1_05_40_PM.png


The Attempt at a Solution


So I was thinking of trying to do row reduction in the hopes that would lead me to an answer.

\left| \begin{array}{ccc}<br /> 0&amp; 1&amp; 1&amp; 2 \\<br /> 1&amp;1&amp;1&amp;a \\<br /> 1&amp;1&amp;0&amp;2 \end{array} \right| → \left| \begin{array}{ccc}<br /> 1&amp;1&amp;1&amp;a \\<br /> 0&amp;1&amp;1&amp;2 \\<br /> 1&amp;1&amp;0&amp;2 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;1&amp;1&amp;2 \\<br /> 1&amp;1&amp;0&amp;2 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;1&amp;1&amp;2 \\<br /> 0&amp;1&amp;0&amp;-a+4 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;0&amp;1&amp;a-2 \\<br /> 0&amp;1&amp;0&amp;-a+4 <br /> \end{array} \right|→\left| \begin{array}{ccc}<br /> 1&amp;0&amp;0&amp;a-2 \\<br /> 0&amp;1&amp;0&amp;-a+4 \\<br /> 0&amp;0&amp;1&amp;a-2<br /> \end{array} \right|

So this seems to be telling me that I can choose any a and x=z=a-2 and y=-a+4. Am I doing this right?
That all looks fine !
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top