Susanne217
- 311
- 0
Hi I have been working on a example and have worked it out as this
f(x) = \( \left( \left \begin{array}{ccc}0 & \mathrm{for} & -\pi < x \leq 0 \\ cos(x) & \mathrm{for} & 0 < x < \pi\end{array}
where f is defined on the interval ]-\pi,\pi[.
Find the corresponding Fourier series for f.
and writ the sum for x = p \cdot \pi where p \in \mathbb{Z}
Complex Fourier series is defined as
\sum_{n=-\infty}^{\infty} c_{n} \cdot e^{i\cdot n \cdot t}
where c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cdot e^{-i \cdot n \cdot t} dt
First I find c_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} cos(t) dt = [\mathrm{sin(t)}]_{\mathrm{t} = -\pi}^{\pi} = 0
Next I find
c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (cos(t) \cdot cos(n \cdot t) - cos(t) \cdot sin(n \cdot t) \cdot i) dt
c_{n} = [\frac{{sin(n-1)\cdot t}}{2 \cdot (n-1)} + \frac{{sin(n11)\cdot t}}{2 \cdot (n+1)}-(\frac{{cos(n-1)\cdot t}}{2 \cdot (n-1)} - \frac{{cos(n+1)\cdot t}}{2 \cdot (n+1)}) \cdot i]_{t=-\pi}^{\pi} = \frac{sin(n+1)\cdot \pi}{2\cdot(n+1)}
which I then multiply by \frac{1}{2\pi} from which I get
c_{n} = \frac{sin(n+1)}{2(n+1)}
Where I end up with the Fourier series
\sum_{n=-\infty}^{\infty} \frac{sin(n+1)}{2(n+1)} \cdot e^{i \cdot n \cdot x}
Have I got it right? I fairly new to Fourier series so I would be very happy if someone would reflect on my work and comment it please.
p.s. Not sure about question two. Do I insert the value of into the sum?
Thank you
Best Regards
Susanne
Homework Statement
f(x) = \( \left( \left \begin{array}{ccc}0 & \mathrm{for} & -\pi < x \leq 0 \\ cos(x) & \mathrm{for} & 0 < x < \pi\end{array}
where f is defined on the interval ]-\pi,\pi[.
Find the corresponding Fourier series for f.
and writ the sum for x = p \cdot \pi where p \in \mathbb{Z}
Homework Equations
Complex Fourier series is defined as
\sum_{n=-\infty}^{\infty} c_{n} \cdot e^{i\cdot n \cdot t}
where c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cdot e^{-i \cdot n \cdot t} dt
The Attempt at a Solution
First I find c_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} cos(t) dt = [\mathrm{sin(t)}]_{\mathrm{t} = -\pi}^{\pi} = 0
Next I find
c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (cos(t) \cdot cos(n \cdot t) - cos(t) \cdot sin(n \cdot t) \cdot i) dt
c_{n} = [\frac{{sin(n-1)\cdot t}}{2 \cdot (n-1)} + \frac{{sin(n11)\cdot t}}{2 \cdot (n+1)}-(\frac{{cos(n-1)\cdot t}}{2 \cdot (n-1)} - \frac{{cos(n+1)\cdot t}}{2 \cdot (n+1)}) \cdot i]_{t=-\pi}^{\pi} = \frac{sin(n+1)\cdot \pi}{2\cdot(n+1)}
which I then multiply by \frac{1}{2\pi} from which I get
c_{n} = \frac{sin(n+1)}{2(n+1)}
Where I end up with the Fourier series
\sum_{n=-\infty}^{\infty} \frac{sin(n+1)}{2(n+1)} \cdot e^{i \cdot n \cdot x}
Have I got it right? I fairly new to Fourier series so I would be very happy if someone would reflect on my work and comment it please.
p.s. Not sure about question two. Do I insert the value of into the sum?
Thank you
Best Regards
Susanne