Finding Eigenstates of Spin Operators in Quantum Mechanics

SunGod87
Messages
30
Reaction score
0
[SOLVED] Quantum Mechanics - Spin

Homework Statement


Problem is attached.



Homework Equations



The Attempt at a Solution



The first part is seemingly straight forward. Measurements are +/- hbar/2, both with probability (1/sqrt[2])^2 = 1/2 of being observed.

For the next part I have written the operator S_x as:

S_x = 1/2 [S+ + S-]
Where S+ and S- are the raising and lowering operators respectively.
ie. S+ = S_x + i S_y and S- = S_x - i S_y
Then using:

S+ | s,m > = [s(s+1 - m(m+1)]^(1/2) hbar | s,m+1 >
S- | s,m > = [s(s+1 - m(m-1)]^(1/2) hbar | s,m+1 >

With s = 1/2 (this is clear from the first part, since we have the eigenvalues of S_z (m) = -1/2 and 1/2 and -s <= m <= s in integer steps.

I obtain
S+ | 1/2 > = 0
S- | 1/2 > = hbar | -1/2 >
S+ | -1/2 > = hbar | 1/2 >
S- | - 1/2 > = 0

So
S_x | 1/2 > = hbar/2 | -1/2 >
S_x | -1/2 > = hbar/2 | 1/2 >

and
S_x | psi > = hbar/2 1/sqrt[2] ( | 1/2 > + | -1/2 > )
So the measurement is simply hbar/2

For the final part (where I become stuck!)
S_y | 1/2 > = 1/2i (S+ - S-) | 1/2 > = ihbar/2 | -1/2 >
S_y | -1/2 > = 1/2i (S+ - S-) | 1/2 > = -ihbar/2 | 1/2 >

So I am required to find a state vector psi such that:
S_y | psi > = -hbar/2 | psi >
1/2i (S+ - S-) | psi > = -hbar/2 | psi >
(S+ - S-) | psi > = -ihbar | psi >

But is it even possible to construct a state vector out of the spin-up and spin-down eigenvectors to give this result? I can't seem to do it?
 

Attachments

  • Q4.png
    Q4.png
    10.7 KB · Views: 564
Physics news on Phys.org
SunGod87 said:

Homework Statement


Problem is attached.



Homework Equations



The Attempt at a Solution



The first part is seemingly straight forward. Measurements are +/- hbar/2, both with probability (1/sqrt[2])^2 = 1/2 of being observed.

For the next part I have written the operator S_x as:

S_x = 1/2 [S+ + S-]
Where S+ and S- are the raising and lowering operators respectively.
ie. S+ = S_x + i S_y and S- = S_x - i S_y
Then using:

S+ | s,m > = [s(s+1 - m(m+1)]^(1/2) hbar | s,m+1 >
S- | s,m > = [s(s+1 - m(m-1)]^(1/2) hbar | s,m+1 >

With s = 1/2 (this is clear from the first part, since we have the eigenvalues of S_z (m) = -1/2 and 1/2 and -s <= m <= s in integer steps.

I obtain
S+ | 1/2 > = 0
S- | 1/2 > = hbar | -1/2 >
S+ | -1/2 > = hbar | 1/2 >
S- | - 1/2 > = 0

So
S_x | 1/2 > = hbar/2 | -1/2 >
S_x | -1/2 > = hbar/2 | 1/2 >

and
S_x | psi > = hbar/2 1/sqrt[2] ( | 1/2 > + | -1/2 > )
So the measurement is simply hbar/2

For the final part (where I become stuck!)
S_y | 1/2 > = 1/2i (S+ - S-) | 1/2 > = ihbar/2 | -1/2 >
S_y | -1/2 > = 1/2i (S+ - S-) | 1/2 > = -ihbar/2 | 1/2 >

So I am required to find a state vector psi such that:
S_y | psi > = -hbar/2 | psi >
1/2i (S+ - S-) | psi > = -hbar/2 | psi >
(S+ - S-) | psi > = -ihbar | psi >

But is it even possible to construct a state vector out of the spin-up and spin-down eigenvectors to give this result? I can't seem to do it?

The attachment has been approved yet so I did not see the question but what you did all seems correct (disclaimer: I did not check all the coefficients but it all looks reasonable). For Sy, here's a trick: simply write psi as c_1 |+1/2> + c_2 |-1/2> and just impose that this be an eigenstate of S_y. That's all that is needed!
 
So I should have (on the RHS)
-hbar/2 [c_1 | 1/2 > + c_2 | -1/2 >]
When I'm done, right?
Or should I have:
-hbar/2 [ | 1/2 > + | -1/2 >]

I'm pretty sure it's the first one, right?

Edit: Maybe not, I'm confusing myself with random coefficients multiplied for our cause and normalisation coefficients; aren't I?

In which case I obtain c_1 = i and c_2 = -i

Here is the question: http://img88.imageshack.us/img88/7308/q4rf5.png

Edit2: Solved, c_1 = 1 and c_2 = -i. Just the eigenvector of the Pauli spin matrix sigma_y, duh!
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top