Finding Eigenvalues and Wave Function in a Basis of Orthonormalized Vectors

Lolek2322
Messages
3
Reaction score
0

Homework Statement


Eigenvalues of the Hamiltonian with corresponding energies are:
Iv1>=(I1>+I2>+I3>)/31/2 E1=α + 2β
Iv2>=(I1>-I3>) /21/2 E2=α-β
Iv3>= (2I2> - I1> I3>)/61/2 E3=α-β

Write the matrix of the Hamiltonian in the basis of the orthonormalized vectors I1>, I2>, I3>

If in t=0, system is in the state I1>, what is the wave function in t?

Homework Equations


Hij = <ilHlj>

The Attempt at a Solution


Although I know that energy is the eigenvalue of the Hermitian operator, I am not sure how to incorporate that in this certain problem. I have used mentioned equation for previous problems, but I always had the form of the operator. With only eigenvectors and eigenvalues I am stuck and don't even know how to begin solving this.
 
Last edited:
Physics news on Phys.org
There seems to be a part of the question that is missing. Can you write it out fully?
 
DrClaude said:
There seems to be a part of the question that is missing. Can you write it out fully?
I appologize. I have written it now
 
One way to go about this is to start by writing the Hamiltonian in the |v1>, |v2>, |v3> basis, then applying the proper transformation operation to "rotate" the Hamiltonian to the |1>, |2>, |3> basis.
 
But unfortunately I do not know how to do that
 
The straightforward way to do it is
1. Find |1>, |2> and |3> as linear combinations of |v1>, |v2> and |v3> and verify that they are orthonormal.
2. Note that H|v1> = (α + 2β) |1> and get similar expressions for H operating on the other two v's.
3. Calculate things like < 1 | H | 2 > using the linear combinations from item 1 and substituting from item 2.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top