Finding Equation of Plane Given Position Vector & Perp.

  • Thread starter Thread starter terryfields
  • Start date Start date
  • Tags Tags
    Normal
terryfields
Messages
44
Reaction score
0
questions acctuly finding the equation of a plane given a position vector 2,1,1, and the perpendicular (3,-1,2) but after i get the normal i think i can do it from there thanks
 
Physics news on Phys.org
What's the difference between a 'perpendicular' and a 'normal'? If (3,-1,2) is a vector that's perpendicular to the plane, then it's a normal.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top