julypraise
- 104
- 0
Homework Statement
I've proved that if B = \bigcup_{i=1}^{\infty} A_{i} then \overline{B} = \bigcup_{i=1}^{\infty} \overline{A_{i}} but it should not be right. So could you find errors on my reasoning?
Homework Equations
The Attempt at a Solution
Observe x \in \overline{B}
iff for every \epsilon>0 \quad B(x;\epsilon) \cap B \neq \emptyset
iff B(x;\epsilon) \cap \bigcup_{i=1}^{\infty} A_{i} \neq \emptyset
iff B(x;\epsilon) \cap A_{i_{0}} \neq \emptyset for some i_{0} \in \mathbb{Z}^{+}
iff x \in \overline{A_{i_{0}}}
iff x \in \bigcup_{i=1}^{\infty} \overline{A_{i}}