Finding Errors in Proof for Baby Rudin Problem 2.7

  • Thread starter Thread starter julypraise
  • Start date Start date
julypraise
Messages
104
Reaction score
0

Homework Statement



I've proved that if B = \bigcup_{i=1}^{\infty} A_{i} then \overline{B} = \bigcup_{i=1}^{\infty} \overline{A_{i}} but it should not be right. So could you find errors on my reasoning?

Homework Equations


The Attempt at a Solution



Observe x \in \overline{B}

iff for every \epsilon>0 \quad B(x;\epsilon) \cap B \neq \emptyset

iff B(x;\epsilon) \cap \bigcup_{i=1}^{\infty} A_{i} \neq \emptyset

iff B(x;\epsilon) \cap A_{i_{0}} \neq \emptyset for some i_{0} \in \mathbb{Z}^{+}

iff x \in \overline{A_{i_{0}}}

iff x \in \bigcup_{i=1}^{\infty} \overline{A_{i}}
 
Physics news on Phys.org
Your fourth iff is wrong.

it should be if $x \in \bar{A_i_0}$ then $B(x,\epsilon)\cap A_{i_0}$.

I mean if $B(x,\epsilon) \cap A_{i_0}$ \forall \epsilon >0, x can still be outside of A_{i_0}.

Take another set such A_j such that x is in it but not in A_i_0 but they intersect each other, and such that whatever nbhd of x we pick it intersects A_i_0.
 
MathematicalPhysicist said:
Your fourth iff is wrong.

it should be if $x \in \bar{A_i_0}$ then $B(x,\epsilon)\cap A_{i_0}$.

I mean if $B(x,\epsilon) \cap A_{i_0}$ \forall \epsilon >0, x can still be outside of A_{i_0}.

Take another set such A_j such that x is in it but not in A_i_0 but they intersect each other, and such that whatever nbhd of x we pick it intersects A_i_0.

Oh yeah. I think I know what you mean. i_{0} depends on epsilon. Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top