ladyrae
- 32
- 0
Is this right? I'm not sure if I'm on the right track.
Using the definition of derivate find f ` (x)
f (x) = x - (a/x) , where a is a constant
f ` (x) = lim h->0 [(f(x+h)) – (f(x))]/h
= lim h->0 [((x+h) –(a/(x+h)) -(x-(a/x))]/h
= lim h->0 ([((x+h) –(a/(x+h)) -(x-(a/x))]/h) . (x(x+h))/(x(x+h))
= lim h->0 ((x^3)+(h^2x)-(ax)-(x^3)-(x^2h)+(ax)+(ah))/(h(x^2+xh))
= lim h->0 (h(hx-x^2+a))/(h(x^2+xh)) = (-x^2+a)/x^2
Using the definition of derivate find f ` (x)
f (x) = x - (a/x) , where a is a constant
f ` (x) = lim h->0 [(f(x+h)) – (f(x))]/h
= lim h->0 [((x+h) –(a/(x+h)) -(x-(a/x))]/h
= lim h->0 ([((x+h) –(a/(x+h)) -(x-(a/x))]/h) . (x(x+h))/(x(x+h))
= lim h->0 ((x^3)+(h^2x)-(ax)-(x^3)-(x^2h)+(ax)+(ah))/(h(x^2+xh))
= lim h->0 (h(hx-x^2+a))/(h(x^2+xh)) = (-x^2+a)/x^2