Dafe said:
I have a little question about something you wrote earlier.
Doesn't statically indeterminate mean that the problem has more supports then needed for it to be in equilibrium?
To me it looks like this particular problem is not statically indeterminate, since it has just enough supports for equilibrium.
I thank you for your patience, I'm a slow learner.
A statically indeterminate structure is one in which there are more unknown reaction forces (or internal forces) than there are the static equilibrium equations. In this problem, there are 3 static equilibrium equations: Sum of forces in X direction =0, Sum of forces in Y direction =0, and sum of torques (moments) about any point =0. But there are 4 unknown reaction forces, namely, Fax, Fay, Fbx, and Fby. Using the static equilibrium equations, you can solve for Fax and Fbx, but try as you might, you can't solve for Fby or Fay without having to consider compatability and deformations. All that the static equilibrium equation will tell you in the Y direction is that Fay + Fby = F (the applied force); it cannot determine how that force F splits amongst each of those terms. That is why you need another equation beyond those 3 equilibrium equations.
If one of those supports were a roller support instead of a pinned support, that is, it was free to slide vertically, then the problem would be statically determinate, since all of F would have to be taken out at the pinned support. But such is not the case here.
Let's assume in this problem that L2 and L3 are equal. Can you visualize that for this case, The reaction
upward at A would be F/2 (placing segment L3 in compression), and the reaction
upward at B would be F/2 (placing segment L2 in tension)? Now you have to develop the general relationship when L2 and L3 are not equal, using the deformation approach. Are you familiar with the deformation formula? It is a linear equation, such that you can proportion the vertical load reactions as a function of the segment lengths. The shorter member carries the greater share of the vertical load.