Finding horizontal range from projectile.

AI Thread Summary
To find the horizontal range of a projectile fired at an initial speed of 1670 m/s at a 51° angle, the correct approach involves calculating the time of flight and using the horizontal velocity. The vertical component of the velocity is 1298 m/s, leading to a time to reach maximum height of approximately 132 seconds, which means the total flight time is double that. The horizontal range can then be calculated by multiplying the horizontal velocity (1051 m/s) by the total time of flight. An alternative formula for range is also provided: range = v^2*sin(2*theta)/gravity. Proper application of these principles will yield the correct answers.
shizupple
Messages
20
Reaction score
0

Homework Statement


A shell is fired from the ground with an initial speed of 1670m/s at an initial angle of 51° to the horizontal
(a) Neglecting air resistance, find the shell's horizontal range.
(b) Find the amount of time the shell is in motion.

Homework Equations


dx=vi+.5at^2
dv=.5(vi+vf)t
v=dx/dt
a=dv/dt


The Attempt at a Solution


I used pythagorean theorem to find x and y components:
velocity(x)= 1051m/s
velocity(y)= 1298m/s

I divided the vertical component by acceleration due to gravity to get:
1298/9.81= 132s

I multiplied the time it was in the air by the horizontal component to get:
1051x132= 138732m

I got the wrong answers. I feel like this should work. I think it might be a bit more complicated. Maybe I need to rewrite one of the kinematic equations in terms of sins and cos use substitution to find one of the variables? Some direction on what to do would be great! Thanks.
 
Physics news on Phys.org
The time t you have found is to reach the maximum height. The time of flight is twice this time. The range is v(x)*2t.
 
rl.bhat said:
The time t you have found is to reach the maximum height. The time of flight is twice this time. The range is v(x)*2t.

Awesome thanks!
 
you can also find out the range using the equation

range = v^2*sin(2*theta)/gravity
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top