thomas49th
- 645
- 0
Homework Statement
Use the determinate method and also the Guass elimination method to find the inverse of the following matrix. Check your results by direct multiplication
A =\left | \begin{array}{ccc} 2&1&0\\ 1&0&0\\ 4&1&2 \end{array}\right | =
Let's do Guass first
Homework Equations
Place A by I and attemp to get A into I. Everything I perform on A must be performed on I and when A is in I, the original I is the inverse?
A =\left | \begin{array}{ccc} 2&1&0\\ 1&0&0\\ 4&1&2 \end{array}\right |
I=\left | \begin{array}{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}\right |
The Attempt at a Solution
Interchange rows 1 and R
R1 <-> R2
A =\left | \begin{array}{ccc} 1&0&0\\ 2&1&0\\ 4&1&2 \end{array}\right | =
I =\left | \begin{array}{ccc} 0&1&0\\ 1&0&0\\ 0&0&1 \end{array}\right |
Now R2 - 2R1
A =\left | \begin{array}{ccc} 1&0&0\\ 0&1&0\\ 4&1&2 \end{array}\right | =
I =\left | \begin{array}{ccc} 0&1&0\\ 1&-2&0\\ 0&0&1 \end{array}\right |
R3 - 4R1
A =\left | \begin{array}{ccc} 1&0&0\\ 0&1&0\\ 0&1&2 \end{array}\right | =
I =\left | \begin{array}{ccc} 0&1&0\\ 1&-2&0\\ 0&-4&1 \end{array}\right |
R3 - R2
A =\left | \begin{array}{ccc} 1&0&0\\ 0&1&0\\ 0&0&2 \end{array}\right | =
I =\left | \begin{array}{ccc} 0&1&0\\ 1&-2&0\\ -1&-4&1 \end{array}\right |
R3 / 2
A =\left | \begin{array}{ccc} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}\right | =
I =\left | \begin{array}{ccc} 0&1&0\\ 1&-2&0\\ -1/2&-2&1/2 \end{array}\right |
but multiplying my A and new I together does not give me I? What have I done wrong?