Finding line where two planes intersect

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Line Planes
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1682916672512.png

The solution is,
1682916718595.png

However, I could not get that. By getting the system in REF, I got ##x = 3 + \frac{3}{7}z ## and ##y = \frac{1}{7}z##. Therefore z is a free variable so ##x = 3 + \frac{3}{7}t = 0## and ##y = \frac{1}{7}t##.

Thus equation of line is ##x\hat i + y\hat j + z\hat k = 3\hat i + (\frac{3}{7}\hat i + \frac{1}{7}\hat j)t##

Does anybody please know what I did wrong here?

Many thanks!
 
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

By getting the system in REF, I got x=3+37z=0 and y=17z.
You are right to get
x=3+\frac{3}{7}z
but why do you make it zero ?
 
  • Like
Likes member 731016
anuttarasammyak said:
You are right to get
x=3+\frac{3}{7}z
but why do you make it zero ?
Thank you for your reply @anuttarasammyak !

Sorry my mistake. That was not meant to be set to zero.

Many thanks!
 
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this problem,
View attachment 325740
The solution is,
View attachment 325741
However, I could not get that. By getting the system in REF, I got ##x = 3 + \frac{3}{7}z ## and ##y = \frac{1}{7}z##. Therefore z is a free variable so ##x = 3 + \frac{3}{7}t = 0## and ##y = \frac{1}{7}t##.
I got the same thing but took it one step further, with z = t. So the equation of the line of intersection is ##L = (\frac 3 7 t + 3)\hat i + \frac 1 7 t \hat j + t \hat k##.

In vector form, the above is ##L = \begin{bmatrix} \frac 3 7 \\ \frac 1 7 \\ 1 \end{bmatrix}t + \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}##

Geometrically, to get points on this line, go out 3 units on the x-axis, and then go off in the direction of <3t/7, t/7, t>.
ChiralSuperfields said:
Thus equation of line is ##x\hat i + y\hat j + z\hat k = 3\hat i + (\frac{3}{7}\hat i + \frac{1}{7}\hat j)t##
Your equation doesn't follow from your work that preceded it.
 
  • Like
Likes member 731016
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top