I Finding matrices of perturbation using creation/annihilation operators

Keru
Messages
20
Reaction score
1
"Given a 3D Harmonic Oscillator under the effects of a field W, determine the matrix for W in the base given by the first excited level"

So first of all we have to arrange W in terms of the creation and annihilation operator. So far so good, with the result:

W = 2az2 - ax2 - ay2 + 2az+ 2 -ax+ 2 -ay+ 2 + 2{az, az+}) - {ax, ax+}) - {ay, ay+}

As for the following part, I've proceeded like this, which I'm pretty sure it's wrong at some point.

In terms of the ladder operator, I'm using the basis:
|nx, ny,nz>

With ni corresponding to the level of excitement on a certain coordinate. I have taken the first excited level to be:

|1,0,0>

I generally find the matrix elements like:

Mi,j = <i|M^|j>

So my thought has been, I have to find them in the basis |1,0,0>, let's just:

<1,0,0|W|1,0,0>

Which looks terrible because that's clearly a 1x1 "matrix".
What am I missing? Do the matrix actually correspond to |1,0,0>, |0,1,0>, |0,0,1> since all these possible combinations correspond to the first energy state? Is that simply not the basis I should be using?

Any help would be greatly appreciated.
 
Physics news on Phys.org
Where is this from and what's the operator ##\hat{W}(\hat{x},\hat{y},\hat{z})## in terms of the position operators ##\hat{x},\hat{y},\hat{z}## ?

A single energy eigenstate (like the first excited level) obviously can't be a basis for the system, you need an infinite number of states.
 
hilbert2 said:
Where is this from and what's the operator ##\hat{W}(\hat{x},\hat{y},\hat{z})## in terms of the position operators ##\hat{x},\hat{y},\hat{z}## ?

A single energy eigenstate (like the first excited level) obviously can't be a basis for the system, you need an infinite number of states.

In terms of position operators it is:
W = 2z2 - x2 - y2
and it comes from the electric cuadrupole.

So, there's something I'm not getting right then. I'll try to translate the exercise as precisely as possible:
"Determine the matrix of W in the base given by the states of the first energy excitation". Should I do all in terms of position operators and forget about creation/annihilation operators? The previous section asked us to express it in terms of them, but this one does not explicitly tell us to use them, so maybe it's just nonsensical trying to do it like i was?
Sorry if the question seems obvious I am pretty much new at this.
 
If the ##\hat{W} = 2\hat{z}^2 - \hat{x}^2 - \hat{y}^2## is supposed to be a potential energy (you first have to multiply it with something of dimensions [energy]/[length]^2 to make it have dimensions of energy), then it doesn't have a ground state at all because the potential does not have a lower limit (it can be as negative as you want if you increase ##x## or ##y## enough). Let's see what others say about this.
 
  • Like
Likes Keith_McClary
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top