yungman
- 5,741
- 294
I need to find the maximum ##\theta## value with given constant "a" of this function.
f(\theta)=\frac{\cos(a\cos\theta)-\cos a}{\sin\theta}
So I take the derivative of the function:
\frac{d f(\theta)}{d\theta}=\frac d {d\theta}\left(\frac{\cos(a\cos\theta)}{\sin\theta}\right)-\frac d {d\theta}\left(\frac{\cos a}{\sin\theta}\right)
\Rightarrow\;\frac{d f(\theta)}{d\theta}=\frac{a\sin^2\theta \sin(a\cos \theta)-\cos\theta\cos(a\cos\theta)}{\sin^2\theta}+\frac{\cos a(\cos\theta)}{\sin^2 \theta}
To find max:
\frac{d f(\theta)}{d\theta}= a\sin(a\cos\theta)-\frac{\cos\theta}{\sin^2\theta}[\cos(a\cos\theta)-\cos a]=0
Which is not simpler or more obvious than the original equation.
Obviously ##\theta=\frac {\pi}{2}## will give
\frac{d f(\theta)}{d\theta}= a\sin(a\cos\theta)-\frac{\cos\theta}{\sin^2\theta}[\cos(a\cos\theta)-\cos a]=0
as ##cos\frac {\pi}{2}=0## and both zero
The other possibility is
a\sin(a\cos\theta)=\frac{\cos\theta}{\sin^2\theta}[\cos(a\cos\theta)-\cos a]
Which is still hard to find the value of the ##\theta##. Please help.
Thanks
f(\theta)=\frac{\cos(a\cos\theta)-\cos a}{\sin\theta}
So I take the derivative of the function:
\frac{d f(\theta)}{d\theta}=\frac d {d\theta}\left(\frac{\cos(a\cos\theta)}{\sin\theta}\right)-\frac d {d\theta}\left(\frac{\cos a}{\sin\theta}\right)
\Rightarrow\;\frac{d f(\theta)}{d\theta}=\frac{a\sin^2\theta \sin(a\cos \theta)-\cos\theta\cos(a\cos\theta)}{\sin^2\theta}+\frac{\cos a(\cos\theta)}{\sin^2 \theta}
To find max:
\frac{d f(\theta)}{d\theta}= a\sin(a\cos\theta)-\frac{\cos\theta}{\sin^2\theta}[\cos(a\cos\theta)-\cos a]=0
Which is not simpler or more obvious than the original equation.
Obviously ##\theta=\frac {\pi}{2}## will give
\frac{d f(\theta)}{d\theta}= a\sin(a\cos\theta)-\frac{\cos\theta}{\sin^2\theta}[\cos(a\cos\theta)-\cos a]=0
as ##cos\frac {\pi}{2}=0## and both zero
The other possibility is
a\sin(a\cos\theta)=\frac{\cos\theta}{\sin^2\theta}[\cos(a\cos\theta)-\cos a]
Which is still hard to find the value of the ##\theta##. Please help.
Thanks
Last edited: