Finding Solutions to $\frac{\partial^2 V}{\partial u \partial v} = 0$

  • Thread starter Thread starter PhDorBust
  • Start date Start date
PhDorBust
Messages
141
Reaction score
0
Given \frac{\partial^2 V}{\partial u \partial v} = 0, the solution is V_1(u) + V_2(v) for arbitrary V_1 , V_2.

I solve to get \frac{\partial V}{\partial u} = V_3(u) and then V = \int V_3(u) du + C Where V_3, C are arbitrary.

How could I transform my latter solution into the first solution? Don't V_1, V_2 have to have some properties such as differentiability? (I found this in a physics textbook)
 
Physics news on Phys.org
try the same method but integrate over the other variable first then equate the two results
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top