Finding speed using conservation of mechanical energy

  • Thread starter Ester
  • Start date
50
0
In preparation for shooting a ball in a pinball machine, a spring (k = 675 N/m) is compressed by 0.0650 m relative to its unstrained length. The ball (m = 0.0585 kg) is at rest against the spring at point A. When the spring is released, the ball slides (without rolling) to point B, which is 0.300 m higher than point A. How fast is the ball moving at B?

I drew three springs vertically each having a ball on the top. The first spring on my left, is unstrained. The second spring is compressed by 0.065 m. The third spring is the tallest, it is .3 m above the second spring. The second spring having a ball at the top is called point A. The third spring having the ball at the top is called point B. I made my h=0 at point B.
From the way I understand the problem, speed at A is zero and mgh at B is also zero. This leads me to the following equation:
(mgh at A) + (1/2)(k)(x^2 at A) = (1/2)(m)(V^2 at B) + (1/2)(k)(x^2 at B)

I don't know if this is right, but I think that h at A is -0.3. Also, x^2 at A is 0^2 - (0.065^2). My x^2 at B is (-(.065^2)) - (.235^2). Plugging everything in, I get my speed at B to be 23.105 m/s. Is this right? Am I using the right approach. Are my values right? Unfortunately, this question is an even question from my textbook, so I do not have an answer for it. If someone is certain, please help me.
 
Last edited:

LeonhardEuler

Gold Member
858
1
I don't think the spring expands all .3 meters with the ball. I think the ball leaves the spring when it expands. I think you can neglect the potential energy of the spring after it has expanded.
 
50
0
thanks, your right, the answer works that way
 

Want to reply to this thread?

"Finding speed using conservation of mechanical energy" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Top Threads

Top