Finding Tension in Rotating Rod: What is the Function of T(x)?

AI Thread Summary
The discussion focuses on finding the tension in a rotating rod as a function of distance from the axis of rotation. The initial attempt at the solution involves integrating the equation for tension, but the user encounters a negative result. Participants point out that the integration limits and the sign in the tension equation may be incorrect. Clarifications are made regarding the interpretation of density and the proper formulation of the tension change, emphasizing that the change in tension should be expressed as dT rather than -dT. The conversation concludes with the user acknowledging the corrections.
manasi bandhaokar
Messages
37
Reaction score
1
a thin uniform rod of length l and density d is rotating with angular velocityω about an axis passing through one of its ends and perpendicular to it.find the tension int the rod as a function of x.(x= dist from axis of rotation).area of cross section = a

attempt at solution:

consider a small of length dx at dist x from axis.
upload_2016-4-24_21-45-30.png

for equilibrium of rod T = T-dT + dmω^2 x
dT = dm ω^2 x
integrating
T(x) =(d * a* ω^2 (x^2 - l^2))/2
this is negative of answer.where am i wrong?
 
Physics news on Phys.org
I guess that a and d are the cross-sectional area and the density of the rod, respectively.

Your second equation, the one for dT, seems ok to me. I do not understand how can you obtain your last result from it. What are the limits of your integral?
Seems to me you're missing a sign in the integration, or, equivalently, you are swapping the integration limits.
 
Further to @FranzDiCoccio 's comments, since it is a thin rod I would interpret "density" as meaning mass per unit length. You do not need a variable for the cross sectional area.
 
manasi bandhaokar said:
for equilibrium of rod T = T-dT + dmω^2 x
dT = dm ω^2 x
integrating
T(x) =(d * a* ω^2 (x^2 - l^2))/2
this is negative of answer.where am i wrong?
I think the problem is associated with the minus sign in writing T - dT for the tension at the outer end of dx. The change in the function T(x) as you go from x to x + dx should be written as dT not - dT. The change in the function will be a negative quantity. So, the value of T at x+dx is T + dT where dT is a negative quantity.

By writing the tension at x + dx as T - dT, your symbol dT does not represent the change in the function T(x), it's the negative of the change in T(x).
 
Last edited:
TSny said:
I think the problem is associated with the minus sign in writing T - dT for the tension at the outer end of dx. The change in the function T(x) as you go from x to x + dx should be written as dT not - dT. The change in the function will be a negative quantity. So, the value of T at x+dx is T + dT where dT is a negative quantity.

By writing the tension at x + dx as T - dT, your symbol dT does not represent the change in the function T(x), it's the negative of the change in T(x).
oh!
thanks!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top