Finding the apparent acceleration due to gravity versus latitude

AI Thread Summary
The discussion focuses on deriving the apparent acceleration due to gravity as a function of latitude by analyzing forces acting on a mass. The participants clarify the equations used to balance forces, particularly distinguishing between normal force and centripetal acceleration. They emphasize the need to correctly interpret the components of forces involved, especially the tangential and radial forces. The concept of apparent gravity is linked to the net force per unit mass, which reflects the weight measured by a scale. Overall, the conversation enhances understanding of how centrifugal force affects perceived gravity based on latitude.
pandafish
Messages
11
Reaction score
2
Homework Statement
A mass at rest on the surface of the earth at latitude λ , experiences a reaction from the earth that consists of a normal component S per unit mass and a tangential frictional component F per unit mass, directed towards a point vertically above the north pole. The earth is assumed to be a uniform sphere of radius R and mass M rotating with an angular velocity ω about its axis. How is the magnitude and direction of the apparent ’acceleration due to gravity’ g , acting on the mass at latitude , related to these forces?

Show that:

$$g^2 = [\frac{GM}{R^2}-R\omega^2cos^2\lambda]^2 + [\frac{1}{2}\omega^2Rsin2\lambda]^2$$
Relevant Equations
$$g=-\frac{GMm}{R^2}$$
I began by drawing a diagram and resolving the forces. Since the question asked for 'apparent gravity' I tried to find the normal force.

I started with the equations:

$$\\(\frac{GM}{R^2}-N)sin\lambda-Fsin\lambda=m\omega^2Rcos\lambda$$
$$\\(\frac{GM}{R^2}-N)sin\lambda-Fcos\lambda=0$$

Solving simultaneously, I ended up with:

$$\\N=\frac{GM}{R^2}-R\omega^2cos^2\lambda$$
 
Last edited:
Physics news on Phys.org
pandafish said:
$$\\(\frac{GM}{R^2}-N)sin\lambda-Fsin\lambda=m\omega^2Rcos\lambda$$
The terms on the left cannot both be sine. F is tangential while the other force sum is radial. I don’t think having trig terms both sides is right either.
Which direction do you intend this force balance to be in?
 
My bad, its suppose to be:

$$\\(\frac{GM}{R^2}-N)cos\lambda+Fsin\lambda=m\omega^2Rcos\lambda$$

This force balance is suppose to be perpendicular to the axis of Earth's rotation.
 
Last edited:
pandafish said:
My bad, its suppose to be:

$$\\(\frac{GM}{R^2}-N)cos\lambda+Fsin\lambda=m\omega^2Rcos\lambda$$

This force balance is suppose to be perpendicular to the axis of Earth's rotation.
Then why the cos on the right?
 
haruspex said:
Then why the cos on the right?
The right side is the centripetal acceleration,

$$a = \frac{v^2}{r} = \omega^2r$$

I believe r is distance from the mass to the earth's axis of rotation, so

$$a = \omega^2(Rcos\lambda)$$

I made a mistake by including mass on the right.
 
pandafish said:
The right side is the centripetal acceleration,

$$a = \frac{v^2}{r} = \omega^2r$$

I believe r is distance from the mass to the earth's axis of rotation, so

$$a = \omega^2(Rcos\lambda)$$

I made a mistake by including mass on the right.
Sorry, I read R as though it was r.

You need an expression for g. Note how the problem statement defines g. It is not as used in your "relevant equation".
 
I see what you mean. Working backwards from the solution, I realised that the 'apparent gravitational acceleration' was made up from the normal force , and the component of the centrifugal force tangential to Earth's surface. However, I'm don't quite understand why this is the case.
 
pandafish said:
I see what you mean. Working backwards from the solution, I realised that the 'apparent gravitational acceleration' was made up from the normal force , and the component of the centrifugal force tangential to Earth's surface. However, I'm don't quite understand why this is the case.
Consider a mass placed on the surface. Apparent gravity is the net force per unit mass. This corresponds to the weight that would be recorded by a conventional weighing machine.
 
  • Like
Likes scottdave and pandafish
Thank you, that explanation makes it a lot clearer what the apparent force is.
 
Back
Top