etotheipi
Vanadium 50 said:Not exactly - that would change Coulomb's Law as well. I think that's what etotheipi's paper is about. I am not changing Coulomb's Law. However, I am working strictly in a plane. Because that's what the problem said to do. I would not call it an infinite cylinder because I don't know what the role of λ would be in that geometry.
Let me explain what I both understand and don't understand about the field line approach you propose (I'll go back to a 3D universe
The number of field lines through a surface that encloses the ring is a measure of the flux out of the surface, and is proportional to the enclosed charge. So if we make the ring smaller but maintain its charge, the number of field lines through any surface enclosing the ring will not change. This is okay
But what I am struggling to understand is why that implies the field just outside of the ring in the radial direction is ##\frac{Q}{4\pi \epsilon_0 r^2}##, at a distance ##r## from the centre. That appears to only be the case if we have spherical symmetry. You did mention that you were only considering field lines in the plane, but I'm not sure this is valid since we are still applying the 3D theorem of Gauss.
Indeed I tried finding an explicit formula without heuristics and ended up with some horrible integrals that I could not solve, which seemed to imply to me that the radial field outside of the ring did not take such a nice form.
I wondered if I had misinterpreted anything you said?