Finding the base and dimension of a system of equations

Deimantas
Messages
38
Reaction score
0

Homework Statement



Find the base and dimension of a system of equations:

3x1 - 5x2 + 2x3 + 4x4 = 0
7x1 - 4x2 + 1x3 + 3x4 = 0
5x1 + 7x2 - 4x3 - 6x4 = 0

2. The attempt at a solution

Written in matrix form:

3 -5 2 4
7 -4 1 3
5 7 -4 -6

What I get:

11 -3 0 2
7 -4 1 3
11 -3 0 2

so, that's two identical rows. That means there's an infinite number of solutions, I think. What gives? I'm lost. Any help to solving this exercise is appreciated
 
Physics news on Phys.org
What do you mean you "got" that? How did you get it? Did you do a row reduction? Typically one does a row reduction to get the first column
\begin{bmatrix}1 \\ 0 \\ 0 \end{bmatrix}


Also, you don't mean "find the base and dimension" of the system of equations. You mean to find the dimension of the solution set of the system of equations.
 
I'm not very good at this subject, as you can see. Yes, I did row operations on the matrix. I just wanted to know if having two identical rows in a matrix can help in solving this kind of exercise, but I guess not.

Maybe this would look clearer?:

3 -5 2 4 = 3 -5 2 4 = 3 -5 2 4 = 1 -5/3 2/3 4/3
7 -4 1 3 = 21 -12 3 9 = 0 23 -11 -19 = 0 23 -11 -19 = 0 23 -11 -19
5 7 -4 -6 = 15 21 -12 -18 = 0 46 -22 -38 = 0 23 -11 -19 0 23 -11 -19

Is this correct? What next? Like I said, I'm not good at linear algebra :frown:

I can't believe it, the whitespace seems to be ignored in the posts... The answer is in bold, a two rows, 4 columns matrix.
 
Last edited by a moderator:
Okay, so that reduces to
\begin{bmatrix}1 & -5 & 2 & 4 \\ 0 & 23 & -11 & -19 \\ 0 & 0 & 0 & 0\end{bmatrix}
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top