Finding the Change in f(x) with Varying x

  • Thread starter Thread starter iRaid
  • Start date Start date
  • Tags Tags
    Change
iRaid
Messages
558
Reaction score
8

Homework Statement


The function f changes value when x changes from a to a+dx. Find the true change and estimated change.
f(x)=x2-x, a=3, dx=.04

a) .2;.08 b).2016;.2016 c).2016;.2 d).2016;.08

Homework Equations


The Attempt at a Solution


dy=(2x-1)dx
dy=.2
Answer = C, but idk what the first number is.

IDK what to do with that tho lol.
 
Physics news on Phys.org
iRaid said:

Homework Statement


The function f changes value when x changes from a to a+dx. Find the true change and estimated change.
f(x)=x2-x, a=3, dx=.04

a) .2;.08 b).2016;.2016 c).2016;.2 d).2016;.08

Homework Equations





The Attempt at a Solution


dy=(2x-1)dx
dy=.2
Answer = C, but idk what the first number is.

IDK what to do with that tho lol.

The first number you get from
f(a + dx) - f(a),
it looks like.
 
eumyang said:
The first number you get from
f(a + dx) - f(a),
it looks like.

Nope I tried that, I end up getting .2416 for some reason >.<
 
Try again. Find
f(3.04) - f(3).
 
Lol what a fail, I was doing (3.04)2-3 not 3.04..

Thanks, kind of embarrassing.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top