Finding the Cheapest Cylinder with Extreme Values: Help Needed!

  • Thread starter Thread starter me_maths
  • Start date Start date
  • Tags Tags
    Cylinder
me_maths
Messages
4
Reaction score
0
I've got kind of stuck with a problem that includes a cylinder.

First off, we know that the cylinder has a Volume of 100 litre ( V = 100 dm^3 )

but it get's abit of tricky since you are constructing this cylinder and you are trying to make the cheapest cylinder when the bottom parts of the cylinder costs 10€ / dm^2 and the side parts cost 5€ / dm^2.

HERE BEGINS MY "WORK"/GUESSING:

I've come to the conclusion that:

V = pi*r^2*h

so: pi*r^2*h = 100
also this makes: h = 100/ ( pi*r^2 )

so I figured I'd take:

10€ * pi*r^2 + 2*pi*r*h*5€

wich becomes:

10€ * pi*r^2 + 2*pi*r*100/ (pi*r^2) *5€

10€ * pi*r^2 + 2*100/r *5€

then take the derivate of that:

2*10€ * pi*r - r*1000/r^2

wich becomes:

2*10€ * pi*r - 1000/r

then you make then = 0 or just directly:

2*10€ * pi*r = 1000/r

then we try to make out what r is so we mix them around abit:

20 * pi * r = 1000/r

r^2 = 1000/(20*pi)

r = root(1000/(20*pi))

wich gives:

r = 3.989422...

wich it shouldn't, the real answer to r at this point should be something 2.52

and here is where I'm stuck, any help is appreciated :)
 
Last edited:
Physics news on Phys.org
It should be \sqrt[3]{\frac{1000}{20\pi}}
10€ * pi*r^2 + 2*100/r *5€

The derivative of this is 20\pi r -\frac{1000}{r^{2}} not

20\pi r - \frac{1000r}{r^{2}}
 
courtrigrad said:
It should be \sqrt[3]{\frac{1000}{20\pi}}




The derivative of this is 20\pi r -\frac{1000}{r^{2}} not

20\pi r - \frac{1000r}{r^{2}}

ohh... thanks a lot ^.^
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top