Finding the Correct Solution to an Integral in Quantum Mechanics

jbowers9
Messages
85
Reaction score
1

Homework Statement


I recently tried to do the following integral:
an = ∫√(2/a) sin(n∏x/a) cosh(x) dx
x=0 to x=a

Homework Equations


an = ∫√(2/a) sin(βx) cosh(x) dx
β = n∏/a
sin(βx) = ½i(eiβx – e-iβx)
cosh(x) = ½(ex + e-x)

The Attempt at a Solution



an = ¼ i √(2/a)∫ (eiβx – e-iβx) (ex + e-x)

after all is said and done, I get;

an = √(2/a)[(a2sin(n∏)sinh(a) – acos(n∏)cosh(a) + n∏a)/(n22 + a2)]


The text, “Quantum Mechanics Demystified”, however, gets;

an = √(2/a)[a(n∏cos(n∏)cosh(a) + sin(n∏)sinh(a))/( n22 + a2)]

Which is correct? And why?


 
Last edited:
Physics news on Phys.org
jbowers9 said:

Homework Statement


I recently tried to do the following integral:
an = ∫√(2/a) sin(n∏x/a) cosh(x) dx
x=0 to x=a

Homework Equations


an = ∫√(2/a) sin(βx) cosh(x) dx
β = n∏/a
sin(βx) = ½i(eiβx – e-iβx)
cosh(x) = ½(ex – e-x)

The Attempt at a Solution



an = ¼ i √(2/a)∫ (eiβx – e-iβx) (ex – e-x)

after all is said and done, I get;

an = √(2/a)[(a2sin(n∏)sinh(a) – acos(n∏)cosh(a) + n∏a)/(n22 + a2)]


The text, “Quantum Mechanics Demystified”, however, gets;

an = √(2/a)[a(n∏cos(n∏)cosh(a) + sin(n∏)sinh(a))/( n22 + a2)]

Which is correct? And why?

Your approach is the one I would take, so here is what I would do:

Check your work to see if you can find any errors.
Take the derivative of your result. Do you get the integrand?
Take the derivative of the book's result. Do you get the integrand?
If the answers to both questions are yes, the two antiderivatives are equal or differ by a constant.
If one answer is yes and the other is no, the result from the "yes" answer is almost surely correct and the other is incorrect. It's even possible that the answer in the book is wrong.
 
jbowers9 said:

Homework Statement


I recently tried to do the following integral:
an = ∫√(2/a) sin(n∏x/a) cosh(x) dx
x=0 to x=a

The Attempt at a Solution



I get;

an = √(2/a)[(a2sin(n∏)sinh(a) – acos(n∏)cosh(a) + n∏a)/(n22 + a2)]

If you've written the Integral correctly, then your solution is closer than the one from the text; it should have an aSin(...) term instead of an a2Sin(...)...Of course, if n is an integer then the sin (n*pi) term is zero and cos(n*pi)=(-1)n.

So, are you sure you are evaluating the correct integral?
 
Mark44 said:
Your approach is the one I would take, so here is what I would do:

Check your work to see if you can find any errors.
Take the derivative of your result. Do you get the integrand?
Take the derivative of the book's result. Do you get the integrand?
If the answers to both questions are yes, the two antiderivatives are equal or differ by a constant.
If one answer is yes and the other is no, the result from the "yes" answer is almost surely correct and the other is incorrect. It's even possible that the answer in the book is wrong.

Usually these are good strategies for checking a solution, but in this case the integral is a definite integral, so differentiating the textbook's solution will naturally give zero.
 
I made an error transcribing the above and corrected the cosh(x) term. I've redone it 3 times and still get my results.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top