Finding the domain of the inverse function

System
Messages
42
Reaction score
0

Homework Statement



Let f(x)=e^(-x)-x ,, x belongs to R

Find the domain of f inverse


Homework Equations



Domain of f inverse = range of f


The Attempt at a Solution



we have :

-inf < x < inf
-inf < -x < inf ... (1)
0 < e^(-x) < inf ... (2)

By adding (1) and (2) :

-inf < e^(-x) - x < inf

So domain of f = R = range of f inverse.

Is this correct?

Can I add the inequalities together?
 
Physics news on Phys.org
Ignore my last post. I read the function wrong. Yep, the domain of the inverse is all real numbers.
 
Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top