Finding the Inverse Laplace of F(s)

  • Thread starter Thread starter tommyhakinen
  • Start date Start date
  • Tags Tags
    Inverse Laplace
tommyhakinen
Messages
34
Reaction score
0

Homework Statement


F(s) = \frac{s^2 + 1}{s^2 + 4s + 3}
Find the inverse laplace transform?

The Attempt at a Solution


Since the nominator's degree is not smaller that the denominator, i have to do the long division before doing the inverse laplace.

F(s) = \frac{- 4s - 2}{(s+1)(s+3)} + 1

I can get the inverse laplace for the first term. However, I was stopped at L-1{1}. Need help. Thank you.
 
Physics news on Phys.org
Hint: What is \int_{0^-}^{\infty} \delta (t) e^{-st}dt ? (where \delta is the dirac delta function)
 
L-1{1}=diracdelta
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top