Finding the K for the limit of a sequence

  • Thread starter Thread starter Design
  • Start date Start date
  • Tags Tags
    Limit Sequence
Design
Messages
62
Reaction score
0

Homework Statement


Let {xk} = 3k+4/k-5; then lim k-> infinity {xk} = 3. Given E > 0 , find an integer K so that |{xk}-3|<E when k>K

The Attempt at a Solution



| 3k+4/k-5 - 3| < E
| 3k+4/k-5 | < E + 3

Now I don't know how to isolate the left part to a single k to find the value of k and know the value of K.
 
Physics news on Phys.org
Don't add 3 to both sides- instead, combine into a single fraction

\left|\frac{3k+4}{k-5}-3\right|=\left|\frac{3k+4-3(k-5)}{k-5}\right|=\left|\frac{19}{k-5}\right|&lt;E
 
I see, thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top