Finding the magnetic field of a loop at far distances

1v1Dota2RightMeow
Messages
75
Reaction score
7

Homework Statement


Loop of current ##I## sitting in the xy plane. Current goes in counter clockwise direction as seen from positive z axis. Find:

a) the magnetic dipole moment
b) the approximate magnetic field at points far from the origin
c) show that, for points on the z axis, your answer is consistent with the exact field (Ex. 5.6), when z R.

Homework Equations


##\vec{m} = I \int d\vec{A}##
##\vec{A}_{dip} (\vec{r}) = \frac{\mu_0 \vec{m} \times \hat r}{4 \pi r^2}##
##\vec{B}=\nabla \times \vec{A}##

The Attempt at a Solution


a) I got that this is ##I\pi R^2 \hat z##
b) I got ##\vec{A}_{dip} (\vec{r}) = \frac{\mu_0 I R^2}{4 r^2}(\hat z \times \hat r)##, but I don't know how to interpret ##(\hat z \times \hat r)##. I tried taking the vector product by treating them as cylindrical coordinates and using the conversion to cartesian, which resulted in ##\hat \phi##. So it says that the vector potential curls around the z axis, which doesn't make sense...

Then I know I have to do ##\vec{B}=\nabla \times \vec{A}##, but that's contingent on the previous part being correct.

c) ?

Any tips?
 
Last edited:
Physics news on Phys.org
Hello again. Suggest you google "magnetic dipole". The Wikipedia has a good explanation. One item here that might create some confusion: In some SI units, I have seen the authors write ## B=\mu_o H +\mu_o M ## instead of ## B=\mu_o H +M ##. In any case, try reading Wikipedia. I think the answer is often computed in spherical coordinates rather than cylindrical, but it appears Wikipedia's answers are independent of coordinate system. ## \\ ## editing... Also, there is a formula for the curl of a cross-product of two vectors. It can often be found on the cover or appendix of an E&M textbook. ## \\ ## editing... additional item... A magnetic dipole can also be modeled as a "+" pole at one end and a "-" pole at the other and the inverse square law can be used for the ## H ## from each pole. The calculations using the pole model are a little simpler than Biot-Savart type integrals around the loop. I believe about a month or two ago, I verified the Wikipedia formulas using the pole method when someone else posted a question about the magnetic field of a magnetic dipole. ## \\ ## Here is a "link" to that discussion: https://www.physicsforums.com/threads/equation-of-magnetic-field-produced-by-a-solenoid.888895/
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top