Rahmuss
- 222
- 0
Homework Statement
Find the momentum-space wave function, \Phi (p,t), for a particle in the ground state of the harmonic oscillator. What is the probability (to 2 significant digits) that a measurement of p on a particle in this state would yield a value outside the classical range (for the same energy)? Hint: Look in a math table under "Normal Distribution" or "Error Function" for the numerical part -- or use Mathematica.
(Problem 3.11 - Intro to QM, 2nd Edition, by Griffiths)
Homework Equations
\Phi (p,t) = \frac{1}{\sqrt{2\pi \hbar}} \int^{\infty}_{-\infty} exp[{\frac{-ipx}{\hbar}}] \Psi (x,t) dx
The Attempt at a Solution
The above equation is the only one that I know should be right. That being said, here is what I've tried so far:
\psi_{o} (x,t) = (\frac{m\omega}{\pi \hbar})^{\frac{1}{4}} exp[{\frac{-m\omega x^{2}}{2\hbar}}] exp[{\frac{-iE_{o}t}{\hbar}}]
With E_{o} = \frac {\hbar \omega}{2}
\psi_{o} (x,t) = (\frac{m\omega}{\pi \hbar})^{\frac{1}{4}} exp[{\frac{-m\omega x^{2}-i\hbar \omega t}{2\hbar}}]
\Phi (p,t) = \frac{1}{\sqrt{2\pi \hbar}} \int^{\infty}_{-\infty}exp[{\frac{-2ipx -m\omega x^{2} -i\hbar \omega t}{2\hbar}].
And if that's right, then I'm not sure how to integrate that. Then after I get what that equals (lets call it ANS), then to find the probability outside the classical value, I need to square \Phi (p,t) right? I'm guessing that I would have something like:
2\int^{\infty}_{ClassicalValue}ANS dp
I'm taking 2 times the integral because I'm guessing since it's an even function that I could take the negative classical value to -infinity as well; but it would equal this. But I'm not sure what to use for the classical value because of how the problem is worded. Am I on the right track?