Finding the needed power without expanding

  • Thread starter Thread starter Seydlitz
  • Start date Start date
  • Tags Tags
    Expanding Power
Seydlitz
Messages
262
Reaction score
4
Say I need to find Maclaurin Series of ##\sin(\ln |1+x|)## until I reach the forth power.

The expansion for ##\sin x## is just ##(x-\frac{x^3}{3!}+...)##

For ##\ln |1+x|## it will be ##(x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...)##

Then with substitution
$$(x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4})-\frac{1}{6}(x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4})^3$$

From the last term with the power of 3, I can immediately see that there's ##-\frac{x^3}{6}## and I take that into account to get.

$$x-\frac{x^2}{2}+\frac{x^3}{6}-\frac{x^4}{4}+...$$

But actually there's ##\frac{x^4}{4}## hidden in the last term group which can only be found after expansion.

My question is, is there anyway to know that there's a term with a specific power without expanding them so that I can get the needed Maclaurin series quickly?
 
Mathematics news on Phys.org
Seydlitz said:
My question is, is there anyway to know that there's a term with a specific power without expanding them so that I can get the needed Maclaurin series quickly?

Yes, this is a partition question. The partitions of 4 are 4, 3+1, 2+1+1, 1+1+1+1. We want three terms so that means the expression we want is
##(-\frac{x^2}{2})(x)(x)##
times the multinomial coefficient (3 choose 2,1 which is ##\frac{3!}{2!1!} = 3##) times the original ##-\frac{1}{6}## out the front, giving us ##\frac{x^4}{4}##
 
Last edited:
  • Like
Likes 1 person
pwsnafu said:
Yes, this is a partition question. The partitions of 4 are 4, 3+1, 2+1+1, 1+1+1+1. We want three terms so that means the expression we want is
##(-\frac{x^2}{2})(x)(x)##
times the multinomial coefficient (3 choose 2,1 which is ##\frac{3!}{2!1!} = 3##) times the original ##-\frac{1}{6}## out the front, giving us ##\frac{x^4}{4}##

Thanks pwsnafu! That is such a nice method, no more guesswork for me! :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top