Finding the Normal Vector for a Triangle in the Plane Using Stoke's Theorem

  • Thread starter Thread starter aaronfue
  • Start date Start date
  • Tags Tags
    Theorem Triangle
aaronfue
Messages
118
Reaction score
0

Homework Statement



Let C be the oriented triangle lying in the plane 2x+y+z=4. Evaluate ∫
_{C} F*dr where F(x,y,z)=y2i + z - xk.

Homework Equations



I will be using ∫C∫curl F \bullet \vec{n} to solve this problem. But when I'm trying to find \vec{n} using -gxi - gyj + k, I get

Using g(x,y)= -2x -y + 4
\vec{n} = < -2, -1, 1>

Did I do that correctly? Will the k just be 1 or 4?

My final answer was 4/3?
 
Last edited:
Physics news on Phys.org
aaronfue said:

Homework Statement



Let C be the oriented triangle lying in the plane 2x+y+z=4. Evaluate ∫
_{C} F*dr where F(x,y,z)=y2i + z - xk.

Homework Equations



I will be using ∫C∫curl F \bullet \vec{n} to solve this problem. But when I'm trying to find \vec{n} using -gxi - gyj + k, I get

Using g(x,y)= -2x -y + 4
\vec{n} = < -2, -1, 1>

Did I do that correctly? Will the k just be 1 or 4?

My final answer was 4/3?

But gx=(-2) so -gx=2. Why are you writing <-2,-1,1>? Shouldn't it be <2,1,1>?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top