Finding the value of the coefficient of elasticity for a 1D collision.

AI Thread Summary
The discussion revolves around calculating the coefficient of elasticity for a 1D collision between two bodies of different masses, where two-thirds of the kinetic energy is lost. The participants derive three key equations based on conservation of momentum, kinetic energy loss, and Newton's law of restitution. They find that their calculations consistently yield negative values for the coefficient of elasticity, indicating a possible error in their approach. By substituting expressions derived from their equations, they can solve for the coefficient of elasticity accurately. The conversation emphasizes the importance of careful algebraic manipulation to avoid sign errors in the calculations.
Lemansky
Messages
1
Reaction score
0
Hi all first post. Myself and my friends are very much stumped by this question. Any help would be much appreciated!

Homework Statement



A body with mass m collides directly with a body of mass 3m. If two thirds of the original kinetic energy is lost, find the coefficient of elasticity for this collision.



Homework Equations



Conservation of momentum: m1u1+ m2u2=m1v1+m2v2.

Newton's empirical law: v2-v1= -e(u2-u1)

Loss in kinetic energy: (1/2)m1(u1)^2+(1/2)m2(u2)^2=(1/2)m1(v1)^2+(1/2)m2)v2)^2.



The Attempt at a Solution



Using all the info given and giving the sphere of mass m initial velocity u and final velocity v1, and the sphere of mass 3m initial velocity of 0 and a final velocity of v2 we derived three equations, as follows,

1) u=v1+3v2 from the conservation of momentum.

2)u^2=3(v1)^2+9(v2)^2 from the fact that the final kinetic energy equals a third of the initial kinetic energy,

3)(v2-v1)/e =u from rearranging Newton's empirical law.


By squaring out equation 1 and setting it equal to equation 2 we found that v1=3v2.

No matter which way we approached the problem the same equations always fell out and by juggling them around we were able to get values for e with one problem, they were always negative (but had they been positive they would have been realistic). We are probably making some simple mistake with signs or we're cancelling out somehting which can't be canceled but we really are stuck.


Any help much appreciated!:smile:
 
Last edited:
Physics news on Phys.org
From the equations you derived, you can solve for the coefficient of elasticity. From equation 1, you have v1 = u-3v2, and from equation 3, you have u = (v2-v1)/e. Substituting the expression for v1 into equation 3 and rearranging, you get e = (v2-u+3v2)/u = (4v2-u)/u. Using the expression for u from equation 2, you can substitute it into the equation for e and solve for v2. Then, substitute the expression for v2 into the equation for e to get your answer.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top