hb1547
- 34
- 0
Homework Statement
"The numerator of this fraction:
\overline{E}=\frac{\int \! E N(E)D(E)dE}{\int \! N(E)D(E)dE}
(N(E) is the number of particles in an energy state, D(E) is the density of states)
is the total (as opposed to the average particle) energy, which we'll call U_{total} here (In other words, the total system energy U is the average particle energy \overline{E} times the total number of particles N.) Calculate U_{total} as a function of E_{Fermi} and use this to show that the minimum (T=0) energy of a gas of spin-1/2 fermions may be written as:
U_{total}=\frac{3}{10} (\frac{3\pi^2 \hbar^3}{m^{3/2}V})^{2/3} N^{5/3}
Homework Equations
- The above.
D(E) = \frac{(2s+1)m^{3/2}V}{\pi^2 \hbar^3 \sqrt{2}}E^{1/2}
N(E)_{FD} = \frac{1}{e^{(E-E_{f})/k_{B}T}+1}
N(E_{F})_{FD} = \frac{1}{2}
\overline{E} = k_{B}T
The Attempt at a Solution
I'm having a hard time deciding what should be multiplied together, and in which ways.
I thought it would be N(E_{F})_{FD} * \overline{E} (the ones above), yet that obviously isn't a function of E_{Fermi}, it's just a function of temperature.
I guess I'm having a hard time deciding which equations I should be using.