Finding velocity and acceleration in a vector via differentiation

Philip Wong
Messages
95
Reaction score
0

Homework Statement


Find the velocity and acceleration of a particle with the given position function:

r(t)=<2cos t, 3t, 2sin t/t+1>

The Attempt at a Solution



v(t)=r'(t) dt= <-2sin t, 3, (2cos t/t+1) - (2sin t/(t+1)2)>

a(t)=v'(t) dt = <-2cos t, 0, (4sint t/(t+1)3-(2sint t/(t+1)-(4 cos t/(t+1)2>

therefore a(t) = <-2cos t, 0, 2/(t+1)[(2sint t/(t+1)2-sin t-(2 cos t/(t+1)>

First of all, is this right?
Secondly, can this be further simplify? If yes, can someone please show me how.
Lastly, I don't have a clue on how to solve this two vectors to give a single numerical answer. Or have I misunderstood the concepts, the answer show actually be presented as a vector instead of a single numerical answer?

Thanks in advance,
Phil
 
Physics news on Phys.org
Philip Wong said:
r(t)=<2cos t, 3t, 2sin t/t+1>

What does 2sin t/t+1 really mean?

\frac {2sin t} {t+1} or

2 sin \frac {t} {t+1} or

\frac {2sin t} {t} +1?
 
You can't get a numerical value, only a vector. You have to have a t value to plug into the functions you derived to get an exact vector with numerical components. The vector r(t) you start with gives position as a function of t, the derivative r'(t) gives the velocity vector as a function of t (velocity at any time t) and r''(t) gives the acceleration vector as a function of t...

If you had a function like r(t)=<2t,t,t> for example, you'd get r'(t)= <2,1,1> since the derivatives are all constant, but if the components of r(t) had non-constant derivatives then you have a non-constant velocity function like in your example.
 
Adkins Jr: I see what you meant now. thanks for your help!
voko: is the first one. sorry I'm not good using latex, I tried to have the equation type out using it. but somehow it didn't work
 
Your solution seems correct. Still, I would like to point out that even if you do not use LaTeX, you could write (sin t)/(t + 1). sin t/t + 1, in the usual convention, means [sin (t/t)] + 1 = [sin 1] + 1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top