Finite series within finite series

  • Thread starter al2521300
  • Start date
  • #1
3
0

Homework Statement


I need to find a closed form for what at first light would be a straightforward finite series. Calculating it explicitly to a particular degree is not difficult, but I just can't find the closed form for the general case.

Homework Equations


For [tex]N>m[/tex], the series is:
[tex]\sum_{k_m=1}^{N}(b^{m-1}x)^{k_m}\sum_{k_{m-1}=1}^{k_m}(b^{m-2}x)^{k_{m-2}}\cdots \sum_{k_2=1}^{k_3}(b x)^{k_2}\sum_{k_1=1}^{k_2}x^{k_2}[/tex]



The Attempt at a Solution


I know the answer will look something like this:
[tex]\sum_{i=0}^{m}a_i(b,x) x^{i N}[/tex]
where the [tex]a_i(b,x)[/tex] are linear combinations of b's and [tex]\frac{1}{1-(b^p x^r)^{-1}}[/tex], but I just can't find the general expression. Even a recurrence relation would be sufficient for my needs.

Any help will be greatly appreciated.
 

Answers and Replies

Related Threads on Finite series within finite series

  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
756
  • Last Post
Replies
4
Views
1K
Replies
2
Views
4K
  • Last Post
Replies
10
Views
2K
  • Last Post
Replies
4
Views
608
  • Last Post
Replies
8
Views
23K
Replies
3
Views
780
Replies
5
Views
5K
Top