DivGradCurl
- 364
- 0
"A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a building 30 m heigh. There is a force due to air resistance of \left| v \right|/30 where the velocity v is measured in m/s. Find the time that the ball hits the ground." (Answer: 5.129 s)
I split the problem into two parts---namely, the way up and down. From the former, I get the time for the ball to reach the maximum height. Then, I use the latter to find the answer.
If we measure x positively upward from the ground, then
m\frac{dv}{dt}=-mg-\frac{v}{30}, \qquad v(0) = v_0, \qquad x(0)=x_0
\frac{dv}{dt} + \frac{v}{30m}=-g
The Method of Integrating Factors gives
\mu = \exp \left( \frac{1}{30m} \int dt \right) =\exp \left( \frac{t}{30m} \right)
v(t)=\exp \left( -\frac{t}{30m} \right) \int -g\exp \left( \frac{t}{30m} \right) \: dt
v(t)=\exp \left( -\frac{t}{30m} \right) \left[ -g(30m) \exp \left( \frac{t}{30m} \right) + \mathrm{C} \right]
v(t)=-30gm + \mathrm{C} \exp \left( -\frac{t}{30m} \right)
Next, we apply the initial condition in order to find the constant.
v(0) = v_0 \Rightarrow \mathrm{C} = v_0 + 30 gm
Thus, we obtain
v(t) = -30gm + \left( v_0 + 30 gm \right) \exp \left( -\frac{t}{30m} \right)
At the maximum height, we have
\frac{dx}{dt}=v=0
which gives
t_{\mbox{up}} = 30m \ln \left( \frac{v_0}{30gm} + 1 \right)
The way down is described as follows:
m\frac{dv}{dt}=-mg+\frac{v}{30}, \qquad v\left( t_{\mbox{up}} \right) = 0, \qquad x\left( t_{\mbox{up}} \right) = x_{\mbox{max}}
\frac{dv}{dt} - \frac{v}{30m}=-g
The Method of Integrating Factors gives
\mu = \exp \left( -\frac{1}{30m} \int dt \right) =\exp \left( -\frac{t}{30m} \right)
v(t)=\exp \left( \frac{t}{30m} \right) \int -g \exp \left( -\frac{t}{30m} \right) \: dt
v(t)=\exp \left( \frac{t}{30m} \right) \left[ -g (-30m) \exp \left( -\frac{t}{30m} \right) + \mathrm{C} \right]
v(t)= 30mg + \mathrm{C}\exp \left( \frac{t}{30m} \right)
Next, we apply the initial condition in order to find the constant.
v\left( t_{\mbox{up}} \right) = 0 \Rightarrow \mathrm{C} = -\frac{(30mg) ^2}{v_0 + 30mg}
Thus, we obtain
v(t)= 30mg -\frac{(30mg) ^2}{v_0 + 30mg} \exp \left( \frac{t}{30m} \right)
and so
\int v(t) \: dt = 30mg\int dt -\frac{(30mg) ^2}{v_0 + 30mg} \int \exp \left( \frac{t}{30m} \right) \: dt
x(t)= 30mgt -\frac{(30m) ^3 g^2}{v_0 + 30mg} \exp \left( \frac{t}{30m} \right) + \mathrm{C}
Next, we apply the initial condition in order to find the constant.
x\left( t_{\mbox{up}} \right) = x_{\mbox{max}} \Rightarrow \mathrm{C} = x_{\mbox{max}} + (30m)^2 g - (30m)^2 g \ln \left( \frac{v_0}{30mg} + 1 \right)
Thus, we obtain
x(t)= 30mgt -\frac{(30m) ^3 g^2}{v_0 + 30mg} \exp \left( \frac{t}{30m} \right) + x_{\mbox{max}} + (30m)^2 g - (30m)^2 g \ln \left( \frac{v_0}{30mg} + 1 \right)
When the ball hits the ground, x(t)=0. Solving for t gives t \approx 4.429 \mbox{ s}. The result is clearly wrong, but there is something even more weird than that. Using x(t) (way up) gives the right answer! In other words
v(t) = -30gm + \left( v_0 + 30 gm \right) \exp \left( -\frac{t}{30m} \right)
gives
\int v(t) \: dt = -30gm \int dt + \left( v_0 + 30 gm \right) \int \exp \left( -\frac{t}{30m} \right) \: dt
x(t) = -30gmt -30m \left( v_0 + 30 gm \right) \exp \left( -\frac{t}{30m} \right) + \mathrm{C}
Next, we apply the initial condition in order to find the constant.
x(0) = x_0 \Rightarrow \mathrm{C} = x_0 + 30m \left( v_0 + 30gm \right)
x(t) = x_0 -30gmt + 30m \left( v_0 + 30 gm \right) \left[ 1 - \exp \left( -\frac{t}{30m} \right) \right]
Again, setting x(t)=0 and solving for t gives t \approx 5.129 \mbox{ s}. Can anybody please explain me why this is happening? From what I have, it seems that the differential equation that models the ball falling is not necessary, which is strange.
Any help is highly appreciated.
I split the problem into two parts---namely, the way up and down. From the former, I get the time for the ball to reach the maximum height. Then, I use the latter to find the answer.
If we measure x positively upward from the ground, then
m\frac{dv}{dt}=-mg-\frac{v}{30}, \qquad v(0) = v_0, \qquad x(0)=x_0
\frac{dv}{dt} + \frac{v}{30m}=-g
The Method of Integrating Factors gives
\mu = \exp \left( \frac{1}{30m} \int dt \right) =\exp \left( \frac{t}{30m} \right)
v(t)=\exp \left( -\frac{t}{30m} \right) \int -g\exp \left( \frac{t}{30m} \right) \: dt
v(t)=\exp \left( -\frac{t}{30m} \right) \left[ -g(30m) \exp \left( \frac{t}{30m} \right) + \mathrm{C} \right]
v(t)=-30gm + \mathrm{C} \exp \left( -\frac{t}{30m} \right)
Next, we apply the initial condition in order to find the constant.
v(0) = v_0 \Rightarrow \mathrm{C} = v_0 + 30 gm
Thus, we obtain
v(t) = -30gm + \left( v_0 + 30 gm \right) \exp \left( -\frac{t}{30m} \right)
At the maximum height, we have
\frac{dx}{dt}=v=0
which gives
t_{\mbox{up}} = 30m \ln \left( \frac{v_0}{30gm} + 1 \right)
The way down is described as follows:
m\frac{dv}{dt}=-mg+\frac{v}{30}, \qquad v\left( t_{\mbox{up}} \right) = 0, \qquad x\left( t_{\mbox{up}} \right) = x_{\mbox{max}}
\frac{dv}{dt} - \frac{v}{30m}=-g
The Method of Integrating Factors gives
\mu = \exp \left( -\frac{1}{30m} \int dt \right) =\exp \left( -\frac{t}{30m} \right)
v(t)=\exp \left( \frac{t}{30m} \right) \int -g \exp \left( -\frac{t}{30m} \right) \: dt
v(t)=\exp \left( \frac{t}{30m} \right) \left[ -g (-30m) \exp \left( -\frac{t}{30m} \right) + \mathrm{C} \right]
v(t)= 30mg + \mathrm{C}\exp \left( \frac{t}{30m} \right)
Next, we apply the initial condition in order to find the constant.
v\left( t_{\mbox{up}} \right) = 0 \Rightarrow \mathrm{C} = -\frac{(30mg) ^2}{v_0 + 30mg}
Thus, we obtain
v(t)= 30mg -\frac{(30mg) ^2}{v_0 + 30mg} \exp \left( \frac{t}{30m} \right)
and so
\int v(t) \: dt = 30mg\int dt -\frac{(30mg) ^2}{v_0 + 30mg} \int \exp \left( \frac{t}{30m} \right) \: dt
x(t)= 30mgt -\frac{(30m) ^3 g^2}{v_0 + 30mg} \exp \left( \frac{t}{30m} \right) + \mathrm{C}
Next, we apply the initial condition in order to find the constant.
x\left( t_{\mbox{up}} \right) = x_{\mbox{max}} \Rightarrow \mathrm{C} = x_{\mbox{max}} + (30m)^2 g - (30m)^2 g \ln \left( \frac{v_0}{30mg} + 1 \right)
Thus, we obtain
x(t)= 30mgt -\frac{(30m) ^3 g^2}{v_0 + 30mg} \exp \left( \frac{t}{30m} \right) + x_{\mbox{max}} + (30m)^2 g - (30m)^2 g \ln \left( \frac{v_0}{30mg} + 1 \right)
When the ball hits the ground, x(t)=0. Solving for t gives t \approx 4.429 \mbox{ s}. The result is clearly wrong, but there is something even more weird than that. Using x(t) (way up) gives the right answer! In other words
v(t) = -30gm + \left( v_0 + 30 gm \right) \exp \left( -\frac{t}{30m} \right)
gives
\int v(t) \: dt = -30gm \int dt + \left( v_0 + 30 gm \right) \int \exp \left( -\frac{t}{30m} \right) \: dt
x(t) = -30gmt -30m \left( v_0 + 30 gm \right) \exp \left( -\frac{t}{30m} \right) + \mathrm{C}
Next, we apply the initial condition in order to find the constant.
x(0) = x_0 \Rightarrow \mathrm{C} = x_0 + 30m \left( v_0 + 30gm \right)
x(t) = x_0 -30gmt + 30m \left( v_0 + 30 gm \right) \left[ 1 - \exp \left( -\frac{t}{30m} \right) \right]
Again, setting x(t)=0 and solving for t gives t \approx 5.129 \mbox{ s}. Can anybody please explain me why this is happening? From what I have, it seems that the differential equation that models the ball falling is not necessary, which is strange.
Any help is highly appreciated.
Last edited: