Fixed point free automorphism of order 2

Click For Summary
The proof discusses the properties of a fixed point free automorphism of order 2 on a group G, demonstrating that it leads to G being abelian. It begins by establishing that applying the automorphism twice returns the original element, and it explores the implications of this property on the group's structure. The author expresses concern that the proof suggests every element is its own inverse, questioning whether this is a necessary outcome of the automorphism's existence. Subsequent clarifications correct misunderstandings about the properties of automorphisms and inverses in the context of group theory. Ultimately, the proof concludes that the group G must be abelian based on the derived relationships.
PragmaticYak
Messages
4
Reaction score
1
Homework Statement
(Problem 1.6.23 from Dummit and Foote, 3rd edition)

Let G be a finite group which possesses an automorphism σ such that σ(g) = g if and only if g = 1. If σ^2 is the identity map from G to G, prove that G is abelian (such an automorphism σ is called fixed point free of order 2). [Hint: Show that every element of G can be written in the form x^{-1}σ(x) and apply σ to such an expression.]
Relevant Equations
If φ is a group homomorphism, then φ(x^{-1}) = φ^{-1}(x).
I did not use the hint for this problem. Here is my attempt at a proof:

Proof: Note first that ##σ(σ(x)) = x## for all ##x \in G##. Then ##σ^{-1}(σ(σ(x))) = σ(x) = σ^{-1}(x) = σ(x^{-1})##.

Now consider ##σ(gh)## for ##g, h \in G##. We have that ##σ(gh) = σ((gh)^{-1}) = σ(h^{-1}g^{-1})##. Additionally, ##σ(gh) = σ(g)σ(h) = σ(g^{-1})σ(h^{-1}) = σ(g^{-1}h^{-1})##. Thus we have ##σ(h^{-1}g^{-1}) = σ(gh) = σ(g^{-1}h^{-1}##). Since ##σ## is a bijection, ##h^{-1}g^{-1} = g^{-1}h^{-1}##, which implies ##gh = hg##. Thus ##G## is abelian.

The thing about this proof that troubles me is that it seems to imply that for all elements ##x \in G##, ##x = x^{-1}##. Is this really a necessary consequence of having such an automorphism on ##G##? Or is there a mistake in my proof? The only part of the proof I can think of that might be problematic is where I apply ##σ^{-1}## to the composition, but it seems perfectly valid because ##σ^{-1}## exists. Or is there a problem somewhere else? Thank you in advance.

Edited to add LaTeX formatting.
 
Last edited:
Physics news on Phys.org
Your last equals sign is wrong:
$$\sigma^{-1}(x) = \sigma(x^{-1})$$
I think what you meant is the property we get from automorphism being a homomorphism, which is that:
$$(\sigma(x))^{-1}= \sigma(x^{-1})$$
The second is correct. The first is not.
Note that in the second one an exponent of -1 always means "take the inverse in this group", whereas in the first one, the first -1 exponent means "take the inverse function", which is a completely different thing: nothing to do with group inverses.
 
Took another crack at this problem. I’ll show the part after proving that every element of ##G## can be written as ##x^{-1}\sigma(x)##.

Let ##x \in G##. Then ##x = y^{-1}\sigma(y)## for some ##y \in G##. Now ##\sigma(x) = \sigma(y^{-1}\sigma(y)) = \sigma(y^{-1})y##. Rearranging, ##y^{-1} = \sigma(x)^{-1}\sigma(y^{-1}) = \sigma(x^{-1}y^{-1})##. Plugging this back into the original equation, we have ##x = \sigma(x^{-1}y^{-1})\sigma(y) = \sigma(x^{-1}y^{-1}y) = \sigma(x^{-1})##.

Now let ##a, b \in G##. Then ##ab = \sigma(a^{-1})\sigma(b^{-1}) = \sigma(a^{-1}b^{-1})##. Additionally, ##ab = \sigma((ab)^{-1}) = \sigma(b^{-1}a^{-1})##. Since ##\sigma## is injective, ##a^{-1}b^{-1} = b^{-1}a^{-1}##, meaning ##ab = ba##. Thus ##G## is abelian.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...