Flow Rate in Tank 2: Same as Q /min?

AI Thread Summary
In the discussion, participants analyze the flow dynamics between two tanks, where tank one is elevated above tank two, which has a pump installed. The key question is whether the flow rate in tank two equals the pump's flow rate, Q ml/min. It is clarified that in a closed system, the water lost from tank two must equal the water gained by tank one, but practical considerations suggest that flow rates may differ due to factors like hose diameter and pump characteristics. Participants express uncertainty about how to approach calculations for gravity flow and pump dynamics, seeking guidance on starting points for analysis, including friction losses and the Bernoulli equation. The conversation emphasizes the importance of understanding both theoretical and practical aspects of fluid dynamics in this setup.
hamshie.k
Messages
11
Reaction score
0
two tanks were placed. tank one at a higher level and other(tank 2) at lower level. But in tank 2 a pump of flow rate Q ml/min is affixed.what is the flow rate in tank 2. Same as Q /min?
 
Engineering news on Phys.org
welcome to pf!

hi hamshie.k! welcome to pf! :smile:
hamshie.k said:
two tanks were placed. tank one at a higher level and other(tank 2) at lower level. But in tank 2 a pump of flow rate Q ml/min is affixed.what is the flow rate in tank 2. Same as Q /min?

?? :confused:

what exactly is the whole question?
 
tank 1 is placed above the level of tank 2. the water flows into tank 2 by the gravitational force from tank 1. But from thank 2 a pump is fixed to suck the water and again pump it into the tank 1.

the question is whether the tank 2 will have the same flow rate of the pump, at the top surface of the tank??
 
hamshie.k said:
… But from thank 2 a pump is fixed to suck the water and again pump it into the tank 1.

ahh!

ok, tell us what you think, and why, and then we'll comment! :smile:
 
A pump is placed in the top level surface of the tank 2. at a suction end . delivered to tank 1
 
(yes, i know, but) tell us what you think the answer is :smile:
 
same as the flow rate of the pump. i need that condition
 
hamshie.k said:
same as the flow rate of the pump.

correct :smile:

but why? (eg, is anything conserved, ie the same?)
 
No external force applied
 
  • #10
forget the physics, just look at the material …

the total amount of water is the same (W1 + W2 = constant),

so W1' + W2' = 0 :wink:
 
  • #11
Is it not possible that the pump in T2 can pump the water to T1 faster then T1 flows into T2?
 
  • #12
Avis said:
Is it not possible that the pump in T2 can pump the water to T1 faster then T1 flows into T2?

if it's a closed system, where all the water has to be either in T1 or in T2 (or in the pipe between them, which we can assume is always full),

then the water lost by T2 has to equal the water gained by T1
 
  • #13
Fair, I was thinking in a more practical way.

tiny-tim said:
if it's a closed system, where all the water has to be either in T1 or in T2 (or in the pipe between them, which we can assume is always full),

then the water lost by T2 has to equal the water gained by T1
 
  • #14
Maybe I'm thinking about this all wrong, but if you let water drain from T1 through a 3" hose and have a pump in T2 with a 1/8" discharge line back to T1, you will not have equal flow through the tanks. They may eventually reach a level of system equillibrium, but the flow rates need not be the same...If the pump is at the surface of the water and drawing from only the head (water level) in T2, then your flow rate will be based on the pump characteristics, not the flow through the gravity line.

Unless you mean tank T2 is fully filled, then obviously the only amount of water that could flow "into" it would be the amount that is flowing "out" to T1.
 
  • #15
Please anyone help me . how i should start calculations for these kind of problems.

1. gravity flow from tank one to tank 2(i am planning to analyse for the tank placed below the level of tank 1 and also for the same level tanks)

2. pump calculations from tank 2 to tank 1

I don't know how to start the problem??

whether i should start from friction losses and benoulli eqn.
i have the flow rate of the pump(peristaltic pump). please guide me what are the calculations i need regarding this??
 
Back
Top