I Fluid dynamics: drag coefficient and pressure at the stagnation point.

AI Thread Summary
The drag coefficient (c_d) is defined as the drag force divided by the product of the pressure at the stagnation point and the area perpendicular to the flow. To determine the pressure at the stagnation point, Bernoulli's equation is applied for an incompressible fluid, assuming both ends are at the same level and the object's boundary velocity is zero. The equation simplifies to show that if the pressure far from the object is considered zero, it accurately reflects the pressure at the stagnation point used in the drag coefficient calculation. This assumption is based on the concept that at the stagnation point, dynamic pressure is converted entirely into static pressure. Understanding this relationship helps clarify how c_d quantifies the kinetic energy loss due to friction and turbulence in the airstream.
happyparticle
Messages
490
Reaction score
24
TL;DR Summary
Pressure at the stagnation point of an incompressible fluid.
Hi,
In my textbook the author say that the drag coefficient is the drag force divided by the pressure at the stagnation point time the area perpendicular to the stream.
##c_d = \frac{2F_d}{\rho v^2 A}##

To get the pressure at the stagnation point I'm using Bernoulli for an incompressible fluid. If both ends are at the same level and knowing that the velocity at the boundary of an object (a sphere for example) is null. Bernoulli equation is now:

##\frac{u^2}{2} + \frac{P}{\rho} = \frac{P'}{\rho}## Where P' is the pressure at the stagnation point.
If the pressure far from the object is 0. We get exactly the pressure at the stagnation point used in the drag coefficient.

If this above is correct why exactly the pressure far from the object is 0?
 
Physics news on Phys.org
Cd represents the percent of the kinetic energy of the airstream that is wasted in friction and turbulence.
At the stagnation point, the whole dynamic pressure becomes static pressure.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top