- #1
mk9898
- 109
- 9
Homework Statement
Bildschirmfoto 2018-06-19 um 18.50.50.png
In the y-z plane there is an infinite long surface with charge density ##\sigma## that slices through a sphere with radius R. Determine the Flux.
The Attempt at a Solution
I have solved the problem but am stuck at the last part. I used Gauss and found that the flux is equal to ##\frac{Q_{in}}{\epsilon_0}## (per the theorem of course). But at the end I have to formulate it with sigma and the area. Something like:
##\frac{Q_{in}}{\epsilon_0} =\frac{\sigma A_{in}}{\epsilon_0}=...##
But my question is, what exactly is ##A_{in}##? It is the area within the sphere? That would just be ##\frac{4}{3}\pi r^3## but that doesn't make much sense.
Attachments
Last edited: