The function │x^2-4│ is not differentiable at x = -2 and x = 2, where the left-hand and right-hand limits of the derivative differ. To determine these points, one can differentiate the function and analyze where the derivative fails to exist. The definition of the derivative, involving limits, is essential for this analysis. Therefore, the critical values where differentiability is lost are specifically at these two points. Understanding these concepts is crucial for evaluating the differentiability of absolute value functions.
#1
gillgill
128
0
For what values of x is │x^2-4│ not differentiable?
Is there a way to solve it without looking at the graph?
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19.
For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Let's declare that for the cylinder,
mass = M = 10 kg
Radius = R = 4 m
For the wall and the floor,
Friction coeff = ##\mu## = 0.5
For the hanging mass,
mass = m = 11 kg
First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on.
Force on the hanging mass
$$mg - T = ma$$
Force(Cylinder) on y
$$N_f + f_w - Mg = 0$$
Force(Cylinder) on x
$$T + f_f - N_w = Ma$$
There's also...
This problem is two parts. The first is to determine what effects are being provided by each of the elements - 1) the window panes; 2) the asphalt surface. My answer to that is
The second part of the problem is exactly why you get this affect.
And one more spoiler: